Size-Dependent Anodic Dissolution of Water-Soluble Palladium Nanoparticles

2013 ◽  
Vol 117 (50) ◽  
pp. 26783-26789 ◽  
Author(s):  
Ashok Kumar ◽  
Daniel A. Buttry
Author(s):  
Wang Liu ◽  
Yann Magnin ◽  
Georg Daniel Förster ◽  
Julie Bourgon ◽  
Thomas Len ◽  
...  

We report an experimental study, supported by a theoretical approach based on simulations, to explore the phenomenon of H trapping in small Pd nanoparticles. Hydrogen absorption/desorption of a series of...


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1890
Author(s):  
Xiang Lai ◽  
Xuan Zhang ◽  
Shukai Li ◽  
Jie Zhang ◽  
Weifeng Lin ◽  
...  

Water soluble organic molecular pollution endangers human life and health. It becomes necessary to develop highly stable noble metal nanoparticles without aggregation in solution to improve their catalytic performance in treating pollution. Polyethyleneimine (PEI)-based stable micelles have the potential to stabilize noble metal nanoparticles due to the positive charge of PEI. In this study, we synthesized the amphiphilic PEI-oleic acid molecule by acylation reaction. Amphiphilic PEI-oleic acid assembled into stable PEI-oleic acid micelles with a hydrodynamic diameter of about 196 nm and a zeta potential of about 34 mV. The PEI-oleic acid micelles-stabilized palladium nanoparticles (PO-PdNPsn) were prepared by the reduction of sodium tetrachloropalladate using NaBH4 and the palladium nanoparticles (PdNPs) were anchored in the hydrophilic layer of the micelles. The prepared PO-PdNPsn had a small size for PdNPs and good stability in solution. Noteworthily, PO-PdNPs150 had the highest catalytic activity in reducing 4-nitrophenol (4-NP) (Knor = 18.53 s−1mM−1) and oxidizing morin (Knor = 143.57 s−1M−1) in aqueous solution than other previous catalysts. The enhanced property was attributed to the improving the stability of PdNPs by PEI-oleic acid micelles. The method described in this report has great potential to prepare many kinds of stable noble metal nanoparticles for treating aqueous pollution.


2018 ◽  
Vol 8 ◽  
pp. 184798041882039 ◽  
Author(s):  
Guohua Zhou ◽  
Huimin Jiang ◽  
Yanfang Zhou ◽  
Peilian Liu ◽  
Yongmei Jia ◽  
...  

In recent years, palladium nanoparticles have been proved as energy acceptor candidates in fluorescence resonance energy transfer-based sensors for analytical and biological purposes. In this article, peptide-coated palladium nanoparticles were prepared using a simple one-step preparation method. The peptide Cys-Ala-Leu-Asn-Asn was used as a ligand, whereas hydrazine hydrate was used as a reductant to obtain water-soluble and stable peptide-coated palladium nanoparticles. Additionally, peptide-coated palladium nanoparticles were functionalized by adding the functional peptide CALNNGGARK(FITC) in combination with Cys-Ala-Leu-Asn-Asn during the preparation process. The prepared functionalized peptide-coated palladium nanoparticles were used for trypsin detection based on the fluorescence resonance energy transfer approach. Under optimized conditions, the proposed method can be used for the detection of trypsin concentrations in the range of approximately 0.2–8-μg/mL with a limit of detection of 0.18-μg/mL. The functionalized peptide-coated palladium nanoparticles were successfully applied for the detection of trypsin in urine samples. Our findings also indicated that peptide-coated palladium nanoparticles can highly quench fluorophores and are suitable for the manufacture of off–on state fluorescent sensors. We anticipated that the peptide-coated palladium nanoparticles proposed in this article will have great potential for the detection of trypsin in urine and other analytical, biological, and clinical applications.


2007 ◽  
Vol 116 (3-4) ◽  
pp. 94-100 ◽  
Author(s):  
Cuihua Xue ◽  
Kumaranand Palaniappan ◽  
Ganesh Arumugam ◽  
Stephen A. Hackney ◽  
Jian Liu ◽  
...  

Nanomaterials ◽  
2012 ◽  
Vol 2 (1) ◽  
pp. 54-64 ◽  
Author(s):  
Ying Xu ◽  
Najeh Al-Salim ◽  
Richard D. Tilley
Keyword(s):  

2009 ◽  
Vol 9 (14) ◽  
pp. 4841-4854 ◽  
Author(s):  
T. Anttila ◽  
P. Vaattovaara ◽  
M. Komppula ◽  
A.-P. Hyvärinen ◽  
H. Lihavainen ◽  
...  

Abstract. In situ measurements of aerosol water uptake and activation of aerosols into cloud droplets provide information on how aerosols influence the microphysical properties of clouds. Here we present a computational scheme that can be used in connection with such measurements to assess the influence of the particle hygroscopicity and mixing state (in terms of the water uptake) on the cloud nucleating ability of particles. Additionally, it provides an estimate for the peak supersaturation of water vapour reached during the formation of the observed cloud(s). The method was applied in interpreting results of a measurement campaign that focused on aerosol-cloud interactions taking place at a subarctic background site located in Northern Finland (second Pallas Cloud Experiment, 2nd PaCE). A set of case studies was conducted, and the observed activation behavior could be successfully explained by a maximum supersaturation that varied between 0.18 and 0.26% depending on the case. In these cases, the diameter corresponding to the activated fraction of 50% was in the range of 110–140 nm, and the particles were only moderately water soluble with hygroscopic growth factors varying between 1.1 and 1.4. The conducted analysis showed that the activated fractions and the total number of particles acting as CCN are expected to be highly sensitive to the particle hygroscopic growth properties. For example, the latter quantity varied over a factor between 1.8 and 3.1, depending on the case, when the mean hygroscopic growth factors were varied by 10%. Another important conclusion is that size-dependent activation profiles carries information on the mixing state of particles.


2016 ◽  
Vol 8 (5) ◽  
pp. 1060-1068 ◽  
Author(s):  
Aakriti Tyagi ◽  
Kamla Rawat ◽  
Anita K. Verma ◽  
H. B. Bohidar

Water soluble size variable (2.43–5.09 nm) CdSe quantum dots.


RSC Advances ◽  
2016 ◽  
Vol 6 (89) ◽  
pp. 85903-85916 ◽  
Author(s):  
Kamran Tahir ◽  
Sadia Nazir ◽  
Aftab Ahmad ◽  
Baoshan Li ◽  
Sayyed Asim Ali Shah ◽  
...  

Graphical representation of green synthesis of PdNPs and their biological and catalytic applications.


2017 ◽  
Vol 352 ◽  
pp. 371-381 ◽  
Author(s):  
Junjie Li ◽  
Wei Chen ◽  
Han Zhao ◽  
Xusheng Zheng ◽  
Lihui Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document