Application of the ATR-IR Spectroscopic Technique to the Characterization of Hydrates Formed by CO2, CO2/H2and CO2/H2/C3H8

2009 ◽  
Vol 113 (22) ◽  
pp. 6308-6313 ◽  
Author(s):  
Rajnish Kumar ◽  
Stephen Lang ◽  
Peter Englezos ◽  
John Ripmeester
2018 ◽  
Vol 5 (1) ◽  
pp. 36-44 ◽  
Author(s):  
Renu Bhutra ◽  
Rashmi Sharma ◽  
Arun Kumar Sharma

Introduction:Biologically potent compounds are one of the most important classes of materials for the upcoming generations. Increasing number of microbial infectious diseases and resistant pathogens create a demand and urgency to develop novel, potent, safe and improved variety of antimicrobial agents. This initiates a task for current chemistry to synthesize compounds that show promising activity as therapeutic agents with lower toxicity. Therefore, a substantial research is needed for their discovery and improvement. Chemistry of present era aims to build a pollution free environment. For the same, it targets to create some alternativeswhich are eco-friendly and nature loving. Present research work is a step towards achieving such alternatives.Method:For this the metallic soaps of copper (derived from common edible oils) were synthesized. The synthesized copper soaps have been confirmed by elemental analysis, UV, and IR spectroscopic technique. The fungicidal activities of copper soaps derived from soyabean, sesame oils have been evaluated by testing against Alternaria alternate and Aspergillus niger by P.D.A. technique.Result:The fungi toxicity results indicate that the strain of fungal species are susceptible towards these soaps and suggests that with the increase in concentration of copper soap it may increase further. The transition metallic soaps showed good antifungal activity because chelation increases the anti-microbial potency.


2015 ◽  
Vol 2 (2) ◽  
pp. 70-73
Author(s):  
Kannan.P ◽  
Thambidurai.S ◽  
Suresh.N

Growth of optically transparent single crystals of thiourea succinic acid (TUSA) was grown successfully from aqueous solution by slow evaporation technique. The crystal structure was elucidated using the single crystal XRD. The various functional groups and the modes of vibrations were identified by FT-IR spectroscopic analysis. The optical absorption studies indicate that the optical transparency window is quite wide making its suitable for NLO applications. Thermal stability of the crown crystal carried out by TGA-DTA analysis.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Houda Marouani ◽  
Salem Slayyem Al-Deyab ◽  
Mohamed Rzaigui

Single crystals of [2-CH3CH2C6H4NH3]6P6O18⋅4H2O are synthesized in aqueous solution by the interaction of cyclohexaphosphoric acid and 2-ethylaniline. This compound crystallizes in the monoclinic system with P21/c space group the unit cell dimensions are: a=16.220(4) Å, b=10.220(5) Å, c=20.328(4) Å, β=113.24(3)∘, Z=2, and V=3096.5(18) Å3. The atomic arrangement can be described by layers formed by cyclohexaphosphate anions P6O186− and water molecules connected by hydrogen bonds O–H⋯O. These inorganic layers are developed around bc planes at x=1/2 and are interconnected by the H-bonds created by ammonium groups of organic cations. All the hydrogen bonds, the van der Waals contacts and electrostatic interactions between the different entities give rise to a three-dimensional network in the structure and add stability to this compound. The thermal behaviour and the IR spectroscopic studies of this new cyclohexaphosphate are discussed.


Author(s):  
K Sunand ◽  
K Vinay Kumar ◽  
K Ashwini ◽  
P Suresh Kumar ◽  
S Vishnu ◽  
...  

Aim: To synthesize and evaluate 4-aminoantipyrine related schiff’s bases as antibacterial agents. Objective: To synthesize, purify, characterize and evaluate 4-aminoantipyrine. Method: Schiff bases derived from 4-aminoantipyrine play a vital role in biological and pharmacological activities. Knowing the importance of 4-aminoatipyrine schiff bases and their analogues wide varieties of bioactivities like analgesic, antiviral, antipyretic, anti-rheumatic, antimicrobial and anti-inflammatory activities have been widely studied. 4-aminoantipyrine compounds C1 (anisaldehyde), C2 (p-hydroxybenzaldehyde) and C3(vanillin) were prepared by condensation between 4-amino antipyrine and substituted aromatic benzaldehydes. The products were purified by recrystallization by using ethanol, characterized by IR spectroscopy. The N-H stretching in 4-aminoantipyrine is shown at 3430 cm-1 and -3325 cm-1. The -HC=N- stretching is observed in the range of 1508-1504 cm-1 The –OCH3 stretching is found at 1888 cm-1. 4-amino antipyrine related schiff’s bases evaluated their activity as antimicrobials in-vitro by spread plate method against E.coli. Schiff bases have potent antibacterial activity with gram negative bacteria E.coli. Results: Synthesis and characterization of a schiff bases derived from substituted benzaldehydes and 4-aminoantipyrine was evaluated and characterized with the IR spectroscopic techniques and schiff bases have shown potent antibacterial activity against E.Coli.


2007 ◽  
Vol 8 (4) ◽  
pp. 184-190 ◽  
Author(s):  
M. Cecilia Madamba ◽  
Wayne M. Mullett ◽  
Smita Debnath ◽  
Elizabeth Kwong

Author(s):  
R. VIJAYARAGAVAN ◽  
S. MULLAINATHAN ◽  
M. BALACHANDRAMOHAN ◽  
N. KRISHNAMOORTHY ◽  
S. NITHIYANANTHAM ◽  
...  

The usability of waste rock (rock residue) powder as an additive material in ceramic samples was investigated. Qualitative analysis was carried out to determine the major and minor constituent minerals present in ceramic bodies made from rock residue powder by using FT-IR spectroscopic technique. Further, the representative ceramic bodies are analyzed by FT-IR technique to yield more information about the functional groups and also to estimate the order or disorder of kaolinite structure.


Author(s):  
Rini Hamsidi ◽  
Wahyuni Wahyuni ◽  
Adryan Fristiohady ◽  
Muhammad Hajrul Malaka ◽  
Idin Sahidin ◽  
...  

Carthamus tinctorius Linn, also known as safflower, is a plant with the potential of being used in the production of antimalarial drugs. The purpose of this study was to isolate and identify the steroid compounds in the safflower and determine its antimalarial activity in vitro. The isolation process was conducted through extraction and chromatography methods. Then, the characterization of the isolated compounds was conducted through spectroscopic techniques which include Fourier Transform Infrared Spectroscopy (FT-IR), NMR 1-D (1H and 13C-NMR), and NMR 2-D (HMQC, HMBC, and H-H COZY) as well as comparing data with the existing literatures. In addition, the tests conducted were with variations of isolate concentrations (10, 1, 0.1, 0.01, and 0.001 μg/mL) against 3D7 strain of Plasmodium falciparum. Based on the FT-IR spectroscopic data, the steroid compounds isolated from safflowers might be stigmasterols. In addition, the isolates had -OH functional group in the region of 3431 cm-1, C-O in the region of 1053 cm-1, and Csp3-H in regions of 2960, 2934, and 2865 cm-1. The NMR 1-D data showed presence of 29 carbon atoms, while the protons were 48 in number. Furthermore, the IC50 value of the compound was 34.03 μg/mL with a percentage inhibition of 43.92% against the growth of P. falciparum. Therefore, it was classified as inactive agent in inhibiting the growth of malaria parasites, however, it could be used as a marker compound in C. tinctorius Linn extract.


2016 ◽  
Vol 71 (1) ◽  
pp. 51-55 ◽  
Author(s):  
Oscar E. Piro ◽  
Gustavo A. Echeverría ◽  
Beatriz S. Parajón-Costa ◽  
Enrique J. Baran

AbstractMagnesium acesulfamate, Mg(C4H4NO4S)2·6H2O, was prepared by the reaction of acesulfamic acid and magnesium carbonate in aqueous solution, and characterized by elemental analysis. Its crystal structure was determined by single crystal X-ray diffraction methods. The substance crystallizes in the triclinic space group P1̅ with one molecule per unit cell. The FTIR spectrum of the compound was also recorded and is briefly discussed. Some comparisons with other simple acesulfamate and saccharinate salts are also made.


Sign in / Sign up

Export Citation Format

Share Document