Lipid Peroxidation in Membranes: The Peroxyl Radical Does Not “Float”

2014 ◽  
Vol 5 (10) ◽  
pp. 1653-1658 ◽  
Author(s):  
Julian Garrec ◽  
Antonio Monari ◽  
Xavier Assfeld ◽  
Lluis M. Mir ◽  
Mounir Tarek
2019 ◽  
Vol 31 (2) ◽  
pp. 280-296 ◽  
Author(s):  
Eikan Mishima ◽  
Emiko Sato ◽  
Junya Ito ◽  
Ken-ichi Yamada ◽  
Chitose Suzuki ◽  
...  

BackgroundFerroptosis, nonapoptotic cell death mediated by free radical reactions and driven by the oxidative degradation of lipids, is a therapeutic target because of its role in organ damage, including AKI. Ferroptosis-causing radicals that are targeted by ferroptosis suppressors have not been unequivocally identified. Because certain cytochrome P450 substrate drugs can prevent lipid peroxidation via obscure mechanisms, we evaluated their antiferroptotic potential and used them to identify ferroptosis-causing radicals.MethodsUsing a cell-based assay, we screened cytochrome P450 substrate compounds to identify drugs with antiferroptotic activity and investigated the underlying mechanism. To evaluate radical-scavenging activity, we used electron paramagnetic resonance–spin trapping methods and a fluorescence probe for lipid radicals, NBD-Pen, that we had developed. We then assessed the therapeutic potency of these drugs in mouse models of cisplatin-induced AKI and LPS/galactosamine-induced liver injury.ResultsWe identified various US Food and Drug Administration–approved drugs and hormones that have antiferroptotic properties, including rifampicin, promethazine, omeprazole, indole-3-carbinol, carvedilol, propranolol, estradiol, and thyroid hormones. The antiferroptotic drug effects were closely associated with the scavenging of lipid peroxyl radicals but not significantly related to interactions with other radicals. The elevated lipid peroxyl radical levels were associated with ferroptosis onset, and known ferroptosis suppressors, such as ferrostatin-1, also functioned as lipid peroxyl radical scavengers. The drugs exerted antiferroptotic activities in various cell types, including tubules, podocytes, and renal fibroblasts. Moreover, in mice, the drugs ameliorated AKI and liver injury, with suppression of tissue lipid peroxidation and decreased cell death.ConclusionsAlthough elevated lipid peroxyl radical levels can trigger ferroptosis onset, some drugs that scavenge lipid peroxyl radicals can help control ferroptosis-related disorders, including AKI.


1990 ◽  
Vol 64 (1) ◽  
pp. 257-271 ◽  
Author(s):  
D. I. Thurnham ◽  
Ratree Singkamani ◽  
R. Kaewichit ◽  
Kalaya Wongworapat

Measurement of peroxyl-radical trapping capacity (TRAP) were made in plasma from patients with malaria from a rural and an urban Thai community. The results were compared with those from control subjects living in the same areas and chosen to match the patients closely. Measurements were also made of various antioxidants including nutritional indices vitamin C and α-tocopherol and the non-nutritional indices urate and protein-sulphydryl. Parasite counts, temperature on examination and the duration of illness were recorded together with measurements of plasma caeruloplasmin (EC1.16.3.1), retinol and malondialdehyde (MDA). In general, most measurements made in the villagers were lower than those in the comparable urban groups. The exceptions were caeruloplasmin and MDA when the latter was expressed as MDA: cholesterol ratio. TRAP values were extremely low in 50% of the villagers and 25% of the urban patients with malaria and these results correlated with retinol and vitamin C and inversely with malonaldehyde. The results suggested that low TRAP values are associated with lipid peroxidation and that vitamin C and possibly retinol may be destroyed by the oxidative conditions present in the plasma in this disease.


1993 ◽  
Vol 36 (9) ◽  
pp. 1262-1271 ◽  
Author(s):  
Melvin J. Yu ◽  
Jefferson R. McCowan ◽  
Lee A. Phebus ◽  
Richard D. Towner ◽  
Peter P. K. Ho ◽  
...  

Marine Drugs ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 122 ◽  
Author(s):  
Noémie Coulombier ◽  
Elodie Nicolau ◽  
Loïc Le Déan ◽  
Cyril Antheaume ◽  
Thierry Jauffrais ◽  
...  

Twelve microalgae species isolated in tropical lagoons of New Caledonia were screened as a new source of antioxidants. Microalgae were cultivated at two light intensities to investigate their influence on antioxidant capacity. To assess antioxidant property of microalgae extracts, four assays with different modes of action were used: 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2’-azino-bis (3-éthylbenzothiazoline-6-sulphonique) (ABTS), oxygen radical absorbance capacity (ORAC), and thiobabituric acid reactive substances (TBARS). This screening was coupled to pigment analysis to link antioxidant activity and carotenoid content. The results showed that none of the microalgae studied can scavenge DPPH and ABTS radicals, but Chaetoceros sp., Nephroselmis sp., and Nitzschia A sp. have the capacity to scavenge peroxyl radical (ORAC) and Tetraselmis sp., Nitzschia A sp., and Nephroselmis sp. can inhibit lipid peroxidation (TBARS). Carotenoid composition is typical of the studied microalgae and highlight the siphonaxanthin, detected in Nephroselmis sp., as a pigment of interest. It was found that xanthophylls were the major contributors to the peroxyl radical scavenging capacity measured with ORAC assay, but there was no link between carotenoids and inhibition of lipid peroxidation measured with TBARS assay. In addition, the results showed that light intensity has a strong influence on antioxidant capacity of microalgae: Overall, antioxidant activities measured with ORAC assay are better in high light intensity whereas antioxidant activities measured with TBARS assay are better in low light intensity. It suggests that different antioxidant compounds production is related to light intensity.


Biochemistry ◽  
2004 ◽  
Vol 43 (49) ◽  
pp. 15339-15348 ◽  
Author(s):  
Punnajit Lim ◽  
Gerald E. Wuenschell ◽  
Vanessa Holland ◽  
Dong-Hyun Lee ◽  
Gerd P. Pfeifer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document