The fractal dimension of geometrically irregular solid surfaces: the role of attractive molecule-surface interactions

Langmuir ◽  
1989 ◽  
Vol 5 (4) ◽  
pp. 938-941 ◽  
Author(s):  
Z. Sokolowska ◽  
A. Patrykiejew ◽  
S. Sokolowski
2020 ◽  
Author(s):  
Robert Chapleski ◽  
Azhad U. Chowdhury ◽  
Kyle Mason ◽  
Robert Sacci ◽  
Benjamin Doughty ◽  
...  

<p><a></a>A fundamental understanding of acidity at an interface, as mediated by structure and molecule-surface interactions, is essential to elucidate the mechanisms of a range of chemical transformations. While the strength­­­­ of an acid in the gas and solution phases is conceptually well understood, how acid-base chemistry works at an interface is notoriously more complicated. Using density functional theory and nonlinear vibrational spectroscopy, we have developed a method to determine the interfacial Brønsted-Lowry acidity of aliphatic alcohols adsorbed on the {100} surface of the model perovskite, strontium titanate. Here we show that, while shorter and less branched alkanols are less acidic as a gas and more acidic in solution, shorter alcohols are less acidic whereas less substituted alkanols are more acidic at the gas-surface interface. Hydrogen bonding plays a critical role in defining acidity, whereas structure-acidity relationships are dominated by van der Waals interactions between the alcohol and the surface.</p><p><a></a></p><p> </p>


2020 ◽  
Author(s):  
Robert Chapleski ◽  
Azhad U. Chowdhury ◽  
Kyle Mason ◽  
Robert Sacci ◽  
Benjamin Doughty ◽  
...  

<p><a></a>A fundamental understanding of acidity at an interface, as mediated by structure and molecule-surface interactions, is essential to elucidate the mechanisms of a range of chemical transformations. While the strength­­­­ of an acid in the gas and solution phases is conceptually well understood, how acid-base chemistry works at an interface is notoriously more complicated. Using density functional theory and nonlinear vibrational spectroscopy, we have developed a method to determine the interfacial Brønsted-Lowry acidity of aliphatic alcohols adsorbed on the {100} surface of the model perovskite, strontium titanate. Here we show that, while shorter and less branched alkanols are less acidic as a gas and more acidic in solution, shorter alcohols are less acidic whereas less substituted alkanols are more acidic at the gas-surface interface. Hydrogen bonding plays a critical role in defining acidity, whereas structure-acidity relationships are dominated by van der Waals interactions between the alcohol and the surface.</p><p><a></a></p><p> </p>


Author(s):  
Robert Chapleski ◽  
Azhad U. Chowdhury ◽  
Kyle R. Mason ◽  
Robert Lee Sacci ◽  
Benjamin Doughty ◽  
...  

A fundamental understanding of acidity at an interface, as mediated by structure and molecule-surface interactions, is essential to elucidate the mechanisms of a range of chemical transformations. While the strength...


1995 ◽  
Vol 31 (1) ◽  
pp. 61-70 ◽  
Author(s):  
Graham F. White

Many organic pollutants, especially synthetic surfactants, adsorb onto solid surfaces in natural and engineered aquatic environments. Biofilm bacteria on such surfaces make major contributions to microbial heterotrophic activity and biodegradation of organic pollutants. This paper reviews evidence for multiple interactions between surfactants, biodegradative bacteria, and sediment-liquid interfaces. Biodegradable surfactants e.g. SDS, added to a river-water microcosm were rapidly adsorb to sediment surface and stimulated the indigenous bacteria to attach to the sediment particles. Recalcitrant surfactants and non-surfactant organic nutrients did not stimulate attachment Attachment of bacteria was maximal when biodegradation was fastest, and was reversed when biodegradation was complete. Dodecanol, the primary product of SDS-biodegradation, markedly stimulated attachment. When SDS was added to suspensions containing sediment and either known degraders or known non-degraders, only the degraders became attached, and attachment accelerated surfactant biodegradation to dodecanol. These cyclical cooperative interactions have implications for the design of biodegradability-tests, the impact of surfactant adjuvants on biodegradability of herbicides/pesticides formulated with surfactants, and the role of surfactants used to accelerate bioremediation of hydrocarbon-polluted soils.


2021 ◽  
Vol 153 ◽  
pp. 106120
Author(s):  
Marcia Domínguez ◽  
Rafael Zarzuela ◽  
Ignacio Moreno-Garrido ◽  
María Carbú ◽  
Jesús M. Cantoral ◽  
...  

10.29007/c7r5 ◽  
2018 ◽  
Author(s):  
Leonardo Enrico Bertassello ◽  
P. Suresh Rao ◽  
Gianluca Botter ◽  
Antoine Aubeneau

Wetlands are ubiquitous topographic depressions on landscapes and form criticalelements of the mosaic of aquatic habitats. The role of wetlands in the global hydrological and biogeochemical cycles is intimately tied to their geometric characteristics. We used DEM analysis and local search algorithms to identify wetland attributes (maximum stage, surface area and storage volume) in four wetlandscapes across the United States. We then derived the exceedance cumulative density functions (cdfs) of these attributes for the identified wetlands, applied the concept of fractal dimension to investigate the variability in wetland’ shapes. Exponentially tempered Pareto distributions were fitted to DEM derived wetland attributes. In particular, the scaling exponents appear to remain constant through the progressive water-filling of the landscapes, suggesting self-similarity of wetland geometrical attributes. This tendency is also reproduced by the fractal dimension (D) of wetland shorelines, which remains constant across different water-filling levels. In addition, the variability in D is constrained within a narrow range (1 &lt;D &lt; 1.33) in all the four wetlandscapes. Finally, the comparison between wetlands identified by the DEM-based model are consistentwith actual data.


Sign in / Sign up

Export Citation Format

Share Document