Surface Characterization of Hydrosilylated Polypropylene:  Contact Angle Measurement and Atomic Force Microscopy

Langmuir ◽  
2001 ◽  
Vol 17 (10) ◽  
pp. 2965-2972 ◽  
Author(s):  
J. Long ◽  
P. Chen
2020 ◽  
Vol 1010 ◽  
pp. 602-607
Author(s):  
Maizlinda Izwana Idris ◽  
Mohammed Firdaus Adzhari ◽  
Siti Natrah Abdul Bakil ◽  
Tee Chuan Lee ◽  
Mohamad Ali Selimin ◽  
...  

This work focuses on the fabrication of film based on natural biopolymers for wound healing application. Alginate and chitosan were choosen because of their oustanding properties such as biocompatible, hydrophilic and non-toxic. Earlier, the biopolymer film was fabricated by using alginate 1% wt and chitosan 1% wt. solutions at volume ratios of 99:1 and 97:3. Next, the biopolymer film solution was cross-linked with 1M CaCl2.2H2O for two hours and later dried for 24 hours at room temperature. Then, the surface properties of the prepared biopolymer films were characterised via Field Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM) and contact angle measurement. It was observed that the surface of the biopolymer film became rougher as the volume of the chitosan increases. This condition was confirmed with average surface roughness, RA for biopolymer film with ratio of 97:3 resulted in higher values. Also it was found that the surface of biopolymer films were hydrophilic after the contact angle was less than 90°. This can be concluded that the biopolymer based on alginate/chitosan is a promising candidate for wound healing materials particularly with good surface properties for faster healing process at the wound areas.


Author(s):  
José M. Barandiarán ◽  
Iñaki Orue ◽  
M.L. Fdez-Gubieda ◽  
A. García Prieto

Author(s):  
H. Jeremy Cho ◽  
Shalabh C. Maroo ◽  
Evelyn N. Wang

Lipid bilayers form nanopores on the application of an electric field. This process of electroporation can be utilized in different applications ranging from targeted drug delivery in cells to nano-gating membrane for engineering applications. However, the ease of electroporation is dependent on the surface energy of the lipid layers and thus directly related to the packing structure of the lipid molecules. 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid monolayers were deposited on a mica substrate using the Langmuir-Blodgett (LB) technique at different packing densities and analyzed using atomic force microscopy (AFM). The wetting behavior of these monolayers was investigated by contact angle measurement and molecular dynamics simulations. It was found that an equilibrium packing density of liquid-condensed (LC) phase DPPC likely exists and that water molecules can penetrate the monolayer displacing the lipid molecules. The surface tension of the monolayer in air and water was obtained along with its breakthrough force.


Hyomen Kagaku ◽  
2000 ◽  
Vol 21 (10) ◽  
pp. 643-650
Author(s):  
Koji ABE ◽  
Satomi OHNISHI ◽  
Haruhisa AKIYAMA ◽  
Hiroshi TAKIGUCHI ◽  
Kaoru TAMADA

Sign in / Sign up

Export Citation Format

Share Document