Simulation Analysis of Contact Angles and Retention Forces of Liquid Drops on Inclined Surfaces

Langmuir ◽  
2012 ◽  
Vol 28 (32) ◽  
pp. 11819-11826 ◽  
Author(s):  
M. J. Santos ◽  
S. Velasco ◽  
J. A. White
Author(s):  
Young-Gil Park ◽  
Anthony M. Jacobi

A numerical study was conducted on the spreading behavior of liquid drops on flat solid surfaces. The model predicts the shape of liquid-vapor interface under static equilibrium using an unstructured surface grid composed of triangular elements. Incremental movement of base contour, i.e. solid-liquid-vapor contact line, is also captured such that the constrained boundary conditions, i.e. advancing and receding contact angles, can be satisfied. The numerical model is applied to a common experiment that studies the behavior of liquid drops on inclined surfaces, where the shape of the drops change in response to an alteration of total volume or gravitational direction. On a heterogeneous surface that has contact angle hysteresis, the shape of the base contour on the solid surface is not determined uniquely but rather dependent upon history. This study demonstrates such dependence by comparing the spreading of a liquid drop on a solid surface with different quasi-equilibrium paths.


1973 ◽  
Vol 59 (4) ◽  
pp. 753-767 ◽  
Author(s):  
E. Pitts

We consider a drop of liquid hanging from a horizontal support and sandwiched between two vertical plates separated by a very narrow gap. Equilibrium profiles of such ‘two-dimensional’ drops were calculated by Neumann (1894) for the case when the angle of contact between the liquid and the horizontal support is zero. This paper gives the equilibrium profiles for other contact angles and the criterion for their stability. Neumann showed that, as the drop height increases, its cross-sectional area increases until a maximum is reached. Thereafter, as the height increases, the equilibrium area decreases. This behaviour is shown to be typical of all contact angles. When the maximum area is reached, the total energy is a minimum. It is shown that the drops are stable as long as the height and the area increase together.


Clay Minerals ◽  
1993 ◽  
Vol 28 (1) ◽  
pp. 1-11 ◽  
Author(s):  
J. Norris ◽  
R. F. Giese ◽  
P. M. Costanzo ◽  
C. J. van Oss

AbstractLaponite RD forms stable, coherent films which adhere strongly to glass slides. Such films are capable of supporting liquid drops allowing the direct measurement of contact angles for five liquids of which, two were apolar (0:-bromonaphthalene and diiodomethane) and three were polar (water, formamide, glycerol); surface tension components and parameters (γLw, γ⊕ and γ⊖) were determined by solving the Young equation. These determinations were made for homoionic samples saturated with Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba and NH4 as well as the natural material. Whereas the values of γLw (the apolar Lifshitz-van der Waals component) varied only within narrow limits (41-44 mJ/m2), the Lewis base parameter varied comparatively widely (24-41 mJ/m2). The Lewis acid parameter was small and relatively constant (1·3-3·0 mJ/m2). The variation of γ⊖ as a function of the exchangeable cation suggests that the divalent cations are shielded from the silicate surface by the water molecules of their sphere of hydration, whereas the monovalent cations are in direct contact with the oxygen atoms of the silicate surface. Furthermore, the divalent cations may screen the Lewis base sites to a greater degree than do the monovalent cations. Lithium behaves anomalously and this may indicate that it physically enters into the ditrigonal hole in the silicate layer.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Giulio D’Emilia ◽  
Emanuela Natale

A methodology is described for the theoretical-experimental evaluation of the measurement uncertainty of the polar and dispersive components of the surface free energy (SFE) in polypropylene films; these parameters are related to the film wettability of adhesives and inks. The proposed method is based on the measurement by means of a vision system of the contact angles of liquid drops deposited on the film itself, which allows for obtaining, through mathematical models drawn from the literature, the physical quantities of interest. The effect of the principal influence parameters has been experimentally evaluated, and testing has allowed the defining of the technical procedures readily transferable in the industry. The uncertainty assessment is interesting not only to correctly evaluate experimental data but also to characterise the reproducibility of the effects of techniques for improving the wettability of films, such as surface treatments.


Sign in / Sign up

Export Citation Format

Share Document