Influence of Low Energy Barrier Contact Resistance in Charge Transport Measurements of Gold Nanoparticle+Dithiol-Based Self-Assembled Films

Langmuir ◽  
2013 ◽  
Vol 29 (4) ◽  
pp. 1264-1272 ◽  
Author(s):  
Patrick Joanis ◽  
Monique Tie ◽  
Al-Amin Dhirani
2003 ◽  
Vol 107 (30) ◽  
pp. 7406-7413 ◽  
Author(s):  
Yvonne Joseph ◽  
Isabelle Besnard ◽  
Miriam Rosenberger ◽  
Berit Guse ◽  
Heinz-Georg Nothofer ◽  
...  

2012 ◽  
Vol 24 (9) ◽  
pp. 1247-1251 ◽  
Author(s):  
Ye Zhou ◽  
Su-Ting Han ◽  
Zong-Xiang Xu ◽  
V. A. L. Roy

2019 ◽  
Vol 21 (19) ◽  
pp. 10146-10151
Author(s):  
Dániel Péter Szekrényes ◽  
Szilárd Pothorszky ◽  
Dániel Zámbó ◽  
András Deák

Spatial arrangement of self-assembled gold nanosphere/nanorod heterodimers and their reorgaization upon drying detected using polarization-resolved scattering spectroscopy.


Langmuir ◽  
2008 ◽  
Vol 24 (5) ◽  
pp. 2219-2223 ◽  
Author(s):  
Yabing Qi ◽  
Imma Ratera ◽  
Jeong Y. Park ◽  
Paul D. Ashby ◽  
Su Ying Quek ◽  
...  

ChemSusChem ◽  
2015 ◽  
Vol 8 (13) ◽  
pp. 2187-2192 ◽  
Author(s):  
Maxim V. Galkin ◽  
Christian Dahlstrand ◽  
Joseph S. M. Samec

2006 ◽  
Vol 128 (34) ◽  
pp. 11260-11267 ◽  
Author(s):  
Dwight S. Seferos ◽  
Amy Szuchmacher Blum ◽  
James G. Kushmerick ◽  
Guillermo C. Bazan

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Y. Tong ◽  
G. R. Berdiyorov ◽  
A. Sinopoli ◽  
M. E. Madjet ◽  
V. A. Esaulov ◽  
...  

AbstractThe stability of the molecular self-assembled monolayers (SAMs) is of vital importance to the performance of the molecular electronics and their integration to the future electronics devices. Here we study the effect of electron irradiation-induced cross-linking on the stability of self-assembled monolayer of aromatic 5,5′-bis(mercaptomethyl)-2,2′-bipyridine [BPD; HS-CH2-(C5H3N)2-CH2-SH] on Au (111) single crystal surface. As a refence, we also study the properties of SAMs of electron saturated 1-dodecanethiol [C12; CH3-(CH2)11-SH] molecules. The stability of the considered SAMs before and after electron-irradiation is studied using low energy Ar+ cluster depth profiling monitored by recording the X-ray photoelectron spectroscopy (XPS) core level spectra and the UV-photoelectron spectroscopy (UPS) in the valance band range. The results indicate a stronger mechanical stability of BPD SAMs than the C12 SAMs. The stability of BPD SAMs enhances further after electron irradiation due to intermolecular cross-linking, whereas the electron irradiation results in deterioration of C12 molecules due to the saturated nature of the molecules. The depth profiling time of the cross-linked BPD SAM is more than 4 and 8 times longer than the profiling time obtained for pristine and BPD and C12 SAMs, respectively. The UPS results are supported by density functional theory calculations, which show qualitative agreement with the experiment and enable us to interpret the features in the XPS spectra during the etching process for structural characterization. The obtained results offer helpful options to estimate the structural stability of SAMs which is a key factor for the fabrication of molecular devices.


Sign in / Sign up

Export Citation Format

Share Document