scholarly journals An estimation on the mechanical stabilities of SAMs by low energy Ar+ cluster ion collision

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Y. Tong ◽  
G. R. Berdiyorov ◽  
A. Sinopoli ◽  
M. E. Madjet ◽  
V. A. Esaulov ◽  
...  

AbstractThe stability of the molecular self-assembled monolayers (SAMs) is of vital importance to the performance of the molecular electronics and their integration to the future electronics devices. Here we study the effect of electron irradiation-induced cross-linking on the stability of self-assembled monolayer of aromatic 5,5′-bis(mercaptomethyl)-2,2′-bipyridine [BPD; HS-CH2-(C5H3N)2-CH2-SH] on Au (111) single crystal surface. As a refence, we also study the properties of SAMs of electron saturated 1-dodecanethiol [C12; CH3-(CH2)11-SH] molecules. The stability of the considered SAMs before and after electron-irradiation is studied using low energy Ar+ cluster depth profiling monitored by recording the X-ray photoelectron spectroscopy (XPS) core level spectra and the UV-photoelectron spectroscopy (UPS) in the valance band range. The results indicate a stronger mechanical stability of BPD SAMs than the C12 SAMs. The stability of BPD SAMs enhances further after electron irradiation due to intermolecular cross-linking, whereas the electron irradiation results in deterioration of C12 molecules due to the saturated nature of the molecules. The depth profiling time of the cross-linked BPD SAM is more than 4 and 8 times longer than the profiling time obtained for pristine and BPD and C12 SAMs, respectively. The UPS results are supported by density functional theory calculations, which show qualitative agreement with the experiment and enable us to interpret the features in the XPS spectra during the etching process for structural characterization. The obtained results offer helpful options to estimate the structural stability of SAMs which is a key factor for the fabrication of molecular devices.

Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5481
Author(s):  
Marcin Sikora ◽  
Anna Bajorek ◽  
Artur Chrobak ◽  
Józef Deniszczyk ◽  
Grzegorz Ziółkowski ◽  
...  

We report on the comprehensive experimental and theoretical studies of magnetic and electronic structural properties of the Gd0.4Tb0.6Co2 compound crystallization in the cubic Laves phase (C15). We present new results and compare them to those reported earlier. The magnetic study was completed with electronic structure investigations. Based on magnetic isotherms, magnetic entropy change (ΔSM) was determined for many values of the magnetic field change (Δμ0H), which varied from 0.1 to 7 T. In each case, the ΔSM had a maximum around room temperature. The analysis of Arrott plots supplemented by a study of temperature dependency of Landau coefficients revealed that the compound undergoes a magnetic phase transition of the second type. From the M(T) dependency, the exchange integrals between rare-earth R-R (JRR), R-Co (JRCo), and Co-Co (JCoCo) atoms were evaluated within the mean-field theory approach. The electronic structure was determined using the X-ray photoelectron spectroscopy (XPS) method as well as by calculations using the density functional theory (DFT) based Full Potential Linearized Augmented Plane Waves (FP-LAPW) method. The comparison of results of ab initio calculations with the experimental data indicates that near TC the XPS spectrum collects excitations of electrons from Co3d states with different values of exchange splitting. The values of the magnetic moment on Co atoms determined from magnetic measurements, estimated from the XPS spectra, and results from ab initio calculations are quantitatively consistent.


2005 ◽  
Vol 863 ◽  
Author(s):  
P. Ryan Fitzpatrick ◽  
Sri Satyanarayana ◽  
Yangming Sun ◽  
John M. White ◽  
John G. Ekerdt

AbstractBlanket porous methyl silsesquioxane (pMSQ) films on a Si substrate were studied with the intent to seal the pores and prevent penetration of a metallic precursor during barrier deposition. The blanket pMSQ films studied were approximately 220 nm thick and had been etched and ashed. When tantalum pentafluoride (TaF5) is exposed to an unsealed pMSQ sample, X-ray photoelectron spectroscopy (XPS) depth profiling and secondary ion mass spectroscopy (SIMS) depth profiling reveal penetration of Ta into the pores all the way to the pMSQ / Si interface. Boron carbo-nitride films were grown by thermal chemical vapor deposition (CVD) using dimethylamine borane (DMAB) precursor with Ar carrier gas and C2H4 coreactant. These films had a stoichiometry of BC0.9N0.07 and have been shown in a previous study to have a k value as low as 3.8. BC0.9N0.07 films ranging from 1.8 to 40.6 nm were deposited on pMSQ and then exposed to TaF5 gas to determine the extent of Ta penetration into the pMSQ. Ta penetration was determined by XPS depth profiling and sometimes SIMS depth profiling. XPS depth profiling of a TaF5 / 6.3 nm BC0.9N0.07 / pMSQ / Si film stack indicates the attenuation of the Ta signal to < 2 at. % throughout the pMSQ. Backside SIMS of this sample suggests that trace amounts of Ta (< 2 at. %) are due to knock-in by Ar ions used for sputtering. An identical film stack containing 3.9 nm BC0.9N0.07 was also successful at inhibiting Ta penetration even with a 370°C post-TaF5 exposure anneal, suggesting the stability of BC0.9N0.07 to thermal diffusion of Ta. All BC0.9N0.07 films thicker than and including 3.9 nm prevented Ta from penetrating into the pMSQ.


2021 ◽  
Author(s):  
Richard Asamoah Opoku

&lt;p&gt;&lt;strong&gt;C&amp;#233;line TOUBIN&lt;/strong&gt;&lt;strong&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;/strong&gt;&lt;strong&gt; and &lt;/strong&gt;&lt;strong&gt;Andr&amp;#233; Severo Pereira GOMES&lt;/strong&gt;&lt;strong&gt;&lt;sup&gt; 3&lt;/sup&gt;&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;&lt;sup&gt;2,3&lt;/sup&gt; Laboratoire de Physique des Lasers, des atomes et des Mol&amp;#233;cules, Universit&amp;#233; de Lille, Cit&amp;#233; Scientifique, 59655 Villeneuve d&amp;#8217;Ascq Cedex, France&lt;/p&gt;&lt;p&gt;E-mail : [email protected]&lt;sup&gt;2&lt;/sup&gt; ; [email protected]&lt;sup&gt;3&lt;/sup&gt;&lt;/p&gt;&lt;p&gt;Ice plays an essential role as a catalyst for reactions between atmospheric trace gases. The uptake of trace gases to ice has been proposed to have a major impact on geochemical cycles, human health, and ozone depletion in the stratosphere [1]. X-ray photoelectron spectroscopy (XPS) [2], serves as a powerful technique to characterize the elemental composition of such interacting species due to its surface sensitivity. Given the existence of complex physico-chemical processes such as adsorption, desorption, and migration within ice matrix, it is important to establish a theoretical framework to determine the electronic properties of these species under different conditions such as temperature and concentration. The focus of this work is to construct an embedding methodology employing Density Functional (DFT) and Wave Function Theory (WFT) to model and interpret photoelectron spectra of adsorbed halogenated species on ice surfaces at the core level with the highest accuracy possible.&amp;#160;&lt;/p&gt;&lt;p&gt;We make use of an embedding approach utilizing full quantum mechanics to divide the system into subunits that will be treated at different levels of theory [3].&lt;/p&gt;&lt;p&gt;The goal is to determine core electron binding energies and the associated chemical shifts for the adsorbed halogenated species such as molecular HCl and the dissociated form Cl- at the surface and within the uppermost bulk layer of the ice respectively [4]. The core energy shifts are compared to the data derived from the XPS spectra [4].&lt;/p&gt;&lt;p&gt;We show that the use of a fully quantum mechanical embedding method, to treat solute-solvent systems is computationally efficient, yet accurate enough to determine the electronic properties of the solute system (halide ion) as well as the long-range effects of the solvent environment (ice).&lt;/p&gt;&lt;p&gt;We acknowledge support by the French government through the Program &amp;#8220;Investissement d'avenir&amp;#8221; through the Labex CaPPA (contract ANR-11-LABX-0005-01) and I-SITE ULNE project OVERSEE (contract ANR-16-IDEX-0004), CPER CLIMIBIO (European Regional Development Fund, Hauts de France council, French Ministry of Higher Education and Research) and French national supercomputing facilities (grants DARI x2016081859 and A0050801859).&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


2000 ◽  
Vol 612 ◽  
Author(s):  
J. S. Pan ◽  
A. T. S. Wee ◽  
C. H. A. Huan ◽  
J. W. Chai ◽  
J. H. Zhang

AbstractTantalum (Ta) thin films of 35 nm thickness were investigated as diffusion barriers as well as adhesion-promoting layers between Cu and SiO2 using X-ray diffractometry (XRD), Scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). After annealing at 600°C for 1h in vacuum, no evidence of interdiffusion was observed. However, XPS depth profiling indicates that elemental Si appears at the Ta/SiO2 interface after annealing. In-situ XPS studies show that the Ta/SiO2 interface was stable until 500°C, but about 32% of the interfacial SiO2 was reduced to elemental Si at 600°C. Upon cooling to room temperature, some elemental Si recombined to form SiO2 again, leaving only 6.5% elemental Si. Comparative studies on the interface chemical states of Cu/SiO2 and Ta/SiO2 indicate that the stability of the Cu/Ta/SiO2/Si system may be ascribed to the strong bonding of Ta and SiO2, due to the reduction of SiO2 through Ta oxide formation.


2020 ◽  
Author(s):  
Zhongtian Mao ◽  
Pablo Lustemberg ◽  
John R. Rumptz ◽  
M. V. Ganduglia-Pirovano ◽  
Charles T. Campbell

<div>The morphology, interfacial bonding energetics and charge transfer of Ni clusters and nanoparticles on slightly-reduced CeO<sub>2-x</sub> (111) surfaces at 100 to 300 K have been studied using single crystal adsorption calorimetry (SCAC), low-energy ion scattering spectroscopy (LEIS), X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED) and density functional theory (DFT). The initial heat of adsorption of Ni vapor decreased with the extent of pre-reduction (x) of the CeO<sub>2-x</sub> (111), showing that stoichiometric ceria adsorbs Ni more strongly than oxygen vacancies. On CeO<sub>1.95</sub> (111) at 300 K, the heat dropped quickly with coverage in the first 0.1 ML, attributed to nucleation of Ni clusters on stoichiometric steps, followed by the Ni particles spreading onto less favorable terrace sites. At 100 K, the clusters nucleate on terraces due</div><div>to slower diffusion. Adsorbed Ni monomers are in the +2 oxidation state, and they bind by ~45 kJ/mol more strongly to step sites than terraces. The measured heat of adsorption versus average particle size on terraces is favorably compared to DFT calculations. The Ce 3d XPS lineshape</div><div>showed an increase in Ce<sup>3+</sup>/Ce<sup>4+</sup> ratio with Ni coverage, providing the number of electrons donated to the ceria per Ni atom. The charge transferred per Ni is initially large but strongly decreases with increasing cluster size for both experiments and DFT, and shows large differences between clusters at steps versus terraces. This charge is localized on the interfacial Ni and Ce atoms in their atomic layers closest to the interface. This knowledge is crucial to understanding the nature of the active sites on the surface of Ni-CeO<sub>2</sub> catalysts for which metal-oxide interactions play a very important role in the activation of O−H and C−H bonds. The changes in these interactions with Ni particle size (metal loading) and the extent of reduction of the ceria help to explain how previously reported catalytic activity and selectivity change with these same structural details.</div>


Author(s):  
Christof Neumann ◽  
Richard A. Wilhelm ◽  
Maria Küllmer ◽  
Andrey Turchanin

Electron irradiation induced synthesis of molecular nanosheets from aromatic self-assembled reveals different mechanisms depending on the applied beam energy.


2017 ◽  
Vol 30 (3) ◽  
pp. 328-338 ◽  
Author(s):  
Dandan Lian ◽  
Ruiping Zhang ◽  
Jianjun Lu ◽  
Jinming Dai

Neat polyphenylene sulfide (PPS) fiber and nano titanium-silicon dioxide-modified PPS fibers (A-PPS) were submitted to an over-temperature in air environment at 200, 220, and 240°C for 24, 192, and 360 h, respectively. Molecular and supramolecular structures were characterized by differential scanning calorimetry, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy (XPS). The outside color of the PPS fibers turned yellow and the mechanical properties were reduced after over-temperature, but the performances of the A-PPS fibers were better than that of the neat PPS fibers. The analyses of the molecular and supramolecular structures showed that the temperatures of 200 and 220°C could not change the crystalline form but could increase the crystallinity of the PPS fibers. The crystallization temperature high-shifted and the crystallization FWHM increased after over-temperature. More significant changes at 240°C could be observed such as breaking of the macromolecular chains, mutual cross-linking, and increase of the melting enthalpy to a higher value than the complete crystallization enthalpy of PPS. Cross-linking between the benzene rings and oxidation of the S atoms did not change the PPS crystalline form but decreased the lattice constant. XPS spectra showed that the cross-linking and oxidation of the S atoms of the PPS fibers mainly came from the breaking of the C–S–C bonds, while the break ratio of the C–S–C bonds was relatively smaller in the case of the A-PPS fibers.


The chemisorption of dinitrogen, ammonia and hydrogen on the Fe (111) single crystal surface has been studied by low energy electron diffraction and high - and low - energy photoelectron spectroscopy. The clean surface is shown to be unreconstructed. Dinitrogen is chemisorbed with a low sticking probability of ca . 1 x 10 -7 at 420 K and 2 x 10 -7 at 470 K and an activation energy of ca . 20 kJ mol -1 ; evidence is presented that dinitrogen is completely dissociated at the surface. The ‘nitride’ layer shows no reaction when exposed to hydrogen at pressures of up to 10 -5 torr and temperatures up to 650 K. The chemisorption régime of ammonia is a mixed one: extensive dehydrogenation occurs at low coverage with associative sorption at higher coverage. Studies of the effects of preadsorption of hydrogen on the chemisorption of ammonia are summarized.


Sign in / Sign up

Export Citation Format

Share Document