Pseudocapacitive Mechanism of Manganese Oxide in 1-Ethyl-3-methylimidazolium Thiocyanate Ionic Liquid Electrolyte Studied Using X-ray Photoelectron Spectroscopy

Langmuir ◽  
2009 ◽  
Vol 25 (19) ◽  
pp. 11955-11960 ◽  
Author(s):  
Jeng-Kuei Chang ◽  
Ming-Tsung Lee ◽  
Wen-Ta Tsai ◽  
Ming-Jay Deng ◽  
Hui-Fang Cheng ◽  
...  
2020 ◽  
Vol 8 ◽  
Author(s):  
Mariya Kalapsazova ◽  
Krassimir Kostov ◽  
Ekaterina Zhecheva ◽  
Radostina Stoyanova

Hybrid metal ion batteries are perceived as competitive alternatives to lithium ion batteries because they provide better balance between energy/power density, battery cost, and environmental requirements. However, their cycling stability and high-temperature storage performance are still far from the desired. Herein, we first examine the temperature-induced reactivity of three-layered oxide, P3-Na2/3Ni1/3Mg1/6Mn1/2O2, toward lithium ionic liquid electrolyte upon cycling in hybrid Li/Na ion cells. Through ex situ X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses, the structural and surface changes in P3-Na2/3Ni1/3Mg1/6Mn1/2O2 are monitored and discussed. Understanding the relevant changes occurring during dual Li+ and Na+ intercalation into P3-Na2/3Ni1/3Mg1/6Mn1/2O2 is of crucial importance to enhance the overall performance of hybrid Li/Na ion batteries at elevated temperatures.


2011 ◽  
Vol 88 (8) ◽  
pp. 2456-2458 ◽  
Author(s):  
Benedetto Bozzini ◽  
Claudio Mele ◽  
Alessandra Gianoncelli ◽  
Burkhard Kaulich ◽  
Maya Kiskinova ◽  
...  

2020 ◽  
Author(s):  
Hyeon Jeong Lee ◽  
Zachary Brown ◽  
Ying Zhao ◽  
Jack Fawdon ◽  
Weixin Song ◽  
...  

<div><div><div><p>The high voltage (4.7 V vs. Li+ /Li) spinel lithium nickel manganese oxide (LiNi0.5 Mn1.5 O4 , LNMO) is a promising candidate for the next-generation of lithium ion batteries due to its high energy density, low cost and environmental impact. However, poor cycling performance at high cutoff potentials limits its commercialization. Herein, hollow structured LNMO is synergistically paired with an ionic liquid electrolyte, 1M lithium bis(fluorosulfonyl)imide (LiFSI) in N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide (Pyr1,3 FSI) to achieve stable cycling performance and improved rate capability. The optimized cathode-electrolyte system exhibits extended cycling performance (>85% capacity retention after 300 cycles) and high rate performance (106.2mAhg–1 at 5C) even at an elevated temperature of 65 ◦C. X-ray photoelectron spectroscopy and spatially resolved x-ray fluorescence analyses confirm the formation of a robust, LiF-rich cathode electrolyte interphase. This study presents a comprehensive design strategy to improve the electrochemical performance of high-voltage cathode materials.</p></div></div></div>


2016 ◽  
Vol 72 ◽  
pp. 50-53 ◽  
Author(s):  
Zifeng Lin ◽  
Patrick Rozier ◽  
Benjamin Duployer ◽  
Pierre-Louis Taberna ◽  
Babak Anasori ◽  
...  

2020 ◽  
Author(s):  
Hyeon Jeong Lee ◽  
Zachary Brown ◽  
Ying Zhao ◽  
Jack Fawdon ◽  
Weixin Song ◽  
...  

<div><div><div><p>The high voltage (4.7 V vs. Li+ /Li) spinel lithium nickel manganese oxide (LiNi0.5 Mn1.5 O4 , LNMO) is a promising candidate for the next-generation of lithium ion batteries due to its high energy density, low cost and environmental impact. However, poor cycling performance at high cutoff potentials limits its commercialization. Herein, hollow structured LNMO is synergistically paired with an ionic liquid electrolyte, 1M lithium bis(fluorosulfonyl)imide (LiFSI) in N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide (Pyr1,3 FSI) to achieve stable cycling performance and improved rate capability. The optimized cathode-electrolyte system exhibits extended cycling performance (>85% capacity retention after 300 cycles) and high rate performance (106.2mAhg–1 at 5C) even at an elevated temperature of 65 ◦C. X-ray photoelectron spectroscopy and spatially resolved x-ray fluorescence analyses confirm the formation of a robust, LiF-rich cathode electrolyte interphase. This study presents a comprehensive design strategy to improve the electrochemical performance of high-voltage cathode materials.</p></div></div></div>


2020 ◽  
Author(s):  
Urbi Pal ◽  
Fangfang Chen ◽  
Derick Gyabang ◽  
Thushan Pathirana ◽  
Binayak Roy ◽  
...  

We explore a novel ether aided superconcentrated ionic liquid electrolyte; a combination of ionic liquid, <i>N</i>-propyl-<i>N</i>-methylpyrrolidinium bis(fluorosulfonyl)imide (C<sub>3</sub>mpyrFSI) and ether solvent, <i>1,2</i> dimethoxy ethane (DME) with 3.2 mol/kg LiFSI salt, which offers an alternative ion-transport mechanism and improves the overall fluidity of the electrolyte. The molecular dynamics (MD) study reveals that the coordination environment of lithium in the ether aided ionic liquid system offers a coexistence of both the ether DME and FSI anion simultaneously and the absence of ‘free’, uncoordinated DME solvent. These structures lead to very fast kinetics and improved current density for lithium deposition-dissolution processes. Hence the electrolyte is used in a lithium metal battery against a high mass loading (~12 mg/cm<sup>2</sup>) LFP cathode which was cycled at a relatively high current rate of 1mA/cm<sup>2</sup> for 350 cycles without capacity fading and offered an overall coulombic efficiency of >99.8 %. Additionally, the rate performance demonstrated that this electrolyte is capable of passing current density as high as 7mA/cm<sup>2</sup> without any electrolytic decomposition and offers a superior capacity retention. We have also demonstrated an ‘anode free’ LFP-Cu cell which was cycled over 50 cycles and achieved an average coulombic efficiency of 98.74%. The coordination chemistry and (electro)chemical understanding as well as the excellent cycling stability collectively leads toward a breakthrough in realizing the practical applicability of this ether aided ionic liquid electrolytes in lithium metal battery applications, while delivering high energy density in a prototype cell.


Sign in / Sign up

Export Citation Format

Share Document