Electrical and physical properties of new electrically conducting quasi-composites. Poly(aniline-co-N-butylaniline) copolymers

1992 ◽  
Vol 25 (13) ◽  
pp. 3332-3337 ◽  
Author(s):  
Jean Yves Bergeron ◽  
Le H. Dao
2014 ◽  
Vol 07 (05) ◽  
pp. 1450062 ◽  
Author(s):  
Umesh S. Waware ◽  
Mohd Rashid

Functionalized copolymers of poly(aniline-co-o-iodoaniline) have been synthesized by the chemical oxidative polymerization method by using o-iodoaniline (o-IA) and aniline (AN) as monomer units by changing their molar feed ratio in acid aqueous medium. The physical properties viz; solubility, electrical conductivity have been studied to characterize them. The copolymers possess better solubility than unsubstituted homopolymer in organic solvent such as N -methyl-2-pyrrodinone (NMP). The conductivity of the pressed pellets of as-synthesized copolymers depends upon the content of o-IA in the polyaniline (PANI). The structural confirmation of the copolymer has been explained by Fourier transform infrared spectroscopy study which suggest that AN and o-IA units are uniformly distributed along the polymer chain and thus, the physical properties of copolymers may possibly be tailored by varying the molar feed ratio in copolymerization reactions. The conductivity of the copolymer decreases upon increasing the o-IA content in molar feed, because the introduction of –I- as a functional group reduces the extent of conjugation of the polymer chain.


2021 ◽  
Author(s):  
Matteo Sanviti ◽  
Angel Alegria ◽  
Daniel E Martínez-Tong

<div><div><div><p>Electrically conducting nanospheres of poly-(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) with tailored size, were prepared by a one-step method. To fabricate the nanostructures, PEDOT:PSS was dissolved in ethylene glycol using a novel strategy and the solution was precipitated in deionized water. The proposed fabrication route allowed to obtain a water-based dispersion of monodisperse nanospheres with good optical properties. To determine physical properties of the nanospheres, we followed a nanoscale approach, using Atomic Force Microscopy (AFM). Our nanoscale mechanical and electrical investigations showed that the nanospheres preserved good physical properties, compared to the commercial product. Moreover, the local studies indicated that the confinement imposed by the spherical shape can lead into a different arrangement of the PSS and PEDOT phases. In particular, we envisaged nanospheres composed by a PEDOT-rich surface, responsible for the good electrical conductivity of the nanostructures.</p></div></div></div>


1992 ◽  
Vol 247 ◽  
Author(s):  
Jia-Ming Liu ◽  
Linfeng Sun ◽  
Jyun-Hwei Hwang ◽  
Sze Cheng Yang

In acidic medium, polyaniline has positive charges on its molecular backbone. These charges come from either protonation at the nitrogen atom sites or polarons in its β-electronic system [1]. Although polyaniline, due to its positive charges, is a polycation, yet its physical properties are quite different from the classical polyelectrolytes. For example, the polycation vinylbenzyltrimethylammonium chloride is soluble in water but polyaniline molecules (and other conducting polymers too) tends to aggregate into intractable solid. Conducting polymers aggregate into intractable solid because of their stiff molecular backbone and the strong short range attractive forces between βclouds of adjacent polyaniline chains. The insolubility of polyaniline poses problem for solution processing of polymers. There have been a heavy effort towards the resolution of this problem [2].


2021 ◽  
Author(s):  
Matteo Sanviti ◽  
Angel Alegria ◽  
Daniel E Martínez-Tong

Electrically conducting nanospheres of poly-(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) with tailored size were prepared by a solvent displacement technique. To fabricate the nanostructures, dried PEDOT:PSS was dissolved in ethylene glycol (EG) and the solution was precipitated in deionized water. The proposed fabrication route allowed to obtain a water-based dispersion of PEDOT:PSS nanospheres with good optical properties. To determine the physical properties of the nanospheres, we followed a nanoscale approach, using Atomic Force Microscopy. Our nanoscale mechanical and electrical investigations showed that the nanospheres preserved good physical properties, compared to the commercial product. Moreover, the local studies indicated that the confinement imposed by the spherical shape and the treatment with EG lead to a different arrangement of the PSS and PEDOT phases, responsible for the good electrical conductivity of the nanostructures.


2021 ◽  
Author(s):  
Matteo Sanviti ◽  
Angel Alegria ◽  
Daniel E Martínez-Tong

<div><div><div><p>Electrically conducting nanospheres of poly-(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) with tailored size, were prepared by a one-step method. To fabricate the nanostructures, PEDOT:PSS was dissolved in ethylene glycol using a novel strategy and the solution was precipitated in deionized water. The proposed fabrication route allowed to obtain a water-based dispersion of monodisperse nanospheres with good optical properties. To determine physical properties of the nanospheres, we followed a nanoscale approach, using Atomic Force Microscopy (AFM). Our nanoscale mechanical and electrical investigations showed that the nanospheres preserved good physical properties, compared to the commercial product. Moreover, the local studies indicated that the confinement imposed by the spherical shape can lead into a different arrangement of the PSS and PEDOT phases. In particular, we envisaged nanospheres composed by a PEDOT-rich surface, responsible for the good electrical conductivity of the nanostructures.</p></div></div></div>


1976 ◽  
Vol 32 ◽  
pp. 365-377 ◽  
Author(s):  
B. Hauck
Keyword(s):  

The Ap stars are numerous - the photometric systems tool It would be very tedious to review in detail all that which is in the literature concerning the photometry of the Ap stars. In my opinion it is necessary to examine the problem of the photometric properties of the Ap stars by considering first of all the possibility of deriving some physical properties for the Ap stars, or of detecting new ones. My talk today is prepared in this spirit. The classification by means of photoelectric photometric systems is at the present time very well established for many systems, such as UBV, uvbyβ, Vilnius, Geneva and DDO systems. Details and methods of classification can be found in Golay (1974) or in the proceedings of the Albany Colloquium edited by Philip and Hayes (1975).


Author(s):  
Frederick A. Murphy ◽  
Alyne K. Harrison ◽  
Sylvia G. Whitfield

The bullet-shaped viruses are currently classified together on the basis of similarities in virion morphology and physical properties. Biologically and ecologically the member viruses are extremely diverse. In searching for further bases for making comparisons of these agents, the nature of host cell infection, both in vivo and in cultured cells, has been explored by thin-section electron microscopy.


Author(s):  
K.P.D. Lagerlof

Although most materials contain more than one phase, and thus are multiphase materials, the definition of composite materials is commonly used to describe those materials containing more than one phase deliberately added to obtain certain desired physical properties. Composite materials are often classified according to their application, i.e. structural composites and electronic composites, but may also be classified according to the type of compounds making up the composite, i.e. metal/ceramic, ceramic/ceramie and metal/semiconductor composites. For structural composites it is also common to refer to the type of structural reinforcement; whisker-reinforced, fiber-reinforced, or particulate reinforced composites [1-4].For all types of composite materials, it is of fundamental importance to understand the relationship between the microstructure and the observed physical properties, and it is therefore vital to properly characterize the microstructure. The interfaces separating the different phases comprising the composite are of particular interest to understand. In structural composites the interface is often the weakest part, where fracture will nucleate, and in electronic composites structural defects at or near the interface will affect the critical electronic properties.


Sign in / Sign up

Export Citation Format

Share Document