scholarly journals In Vitro and in Vivo mRNA Delivery Using Lipid-Enveloped pH-Responsive Polymer Nanoparticles

2011 ◽  
Vol 8 (3) ◽  
pp. 774-787 ◽  
Author(s):  
Xingfang Su ◽  
Jennifer Fricke ◽  
Daniel G. Kavanagh ◽  
Darrell J. Irvine
2013 ◽  
Vol 12 (4) ◽  
pp. 304-310 ◽  
Author(s):  
Gulsim K. Kulsharova ◽  
Matthew B. Lee ◽  
Felice Cheng ◽  
Munima Haque ◽  
Hyungsoo Choi ◽  
...  

2020 ◽  
Author(s):  
Lian Deng ◽  
Xiongjie Zhu ◽  
Zhongjian Yu ◽  
Ying Li ◽  
Lingyu Qin ◽  
...  

Abstract Although single-drug chemotherapy is still an effective treatment for esophageal cancer, its long-term application is limited by severe side effects. Nanomedicines have increasingly attracted attention because of their good biological safety, targeting and high-efficiency loading of multiple drugs. Herein, we have developed a pH-responsive nanocarrier that has high affinity for the transferrin receptor, which is overexpressed by tumor cells. The system is capable of simultaneous delivery of the chemotherapy drug, docetaxel, and the Chinese Medicine, curcumin, for treatment of esophageal cancer. This novel T7-modified targeting nanosystem releases loaded drugs when exposed to the acidic microenvironment of the tumor, and exerts a synergistic anti-tumor effect, and T7-NP-DC with docetaxel and curcumin loading of 10% and 6.1%, respectively. In vitro and in vivo studies showed that improved anti-tumor efficacy could be obtained by loading docetaxel and curcumin into the T7-modified nanocarrierwithout obvious toxicity or side effects, compared to drug without nanocarrier. Furthermore, the nanocarriers conjugated with T7 short peptides were more readily taken up by esophageal cancer cells compared with normal cells.Together, our findings indicate that the materials can safely exert synergistic anti-tumor effects and provide an excellent therapeutic platform for combination therapy of esophageal cancer.


2018 ◽  
Vol 15 (3) ◽  
pp. 882-891 ◽  
Author(s):  
Hui-Na Liu ◽  
Ning-Ning Guo ◽  
Tian-Tian Wang ◽  
Wang-Wei Guo ◽  
Meng-Ting Lin ◽  
...  

Small ◽  
2017 ◽  
Vol 13 (38) ◽  
pp. 1701582 ◽  
Author(s):  
Bohdan Andreiuk ◽  
Andreas Reisch ◽  
Marion Lindecker ◽  
Gautier Follain ◽  
Nadine Peyriéras ◽  
...  

Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1093
Author(s):  
Daniel Hassan ◽  
Calvin A. Omolo ◽  
Victoria Oluwaseun Fasiku ◽  
Ahmed A Elrashedy ◽  
Chunderika Mocktar ◽  
...  

Globally, human beings continue to be at high risk of infectious diseases caused by methicillin-resistant Staphylococcus aureus (MRSA); and current treatments are being depleted due to antimicrobial resistance. Therefore, the synthesis and formulation of novel materials is essential for combating antimicrobial resistance. The study aimed to synthesize a quaternary bicephalic surfactant (StBAclm) and thereof to formulate pH-responsive vancomycin (VCM)-loaded quatsomes to enhance the activity of the antibiotic against MRSA. The surfactant structure was confirmed using 1H, 13C nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), and high-resolution mass spectrometry (HRMS). The quatsomes were prepared using a sonication/dispersion method and were characterized using various in vitro, in vivo, and in silico techniques. The in vitro cell biocompatibility studies of the surfactant and pH-responsive vancomycin-loaded quatsomes (VCM-StBAclm-Qt1) revealed that they are biosafe. The prepared quatsomes had a mean hydrodynamic diameter (MHD), polydispersity index (PDI), and drug encapsulation efficiency (DEE) of 122.9 ± 3.78 nm, 0.169 ± 0.02 mV, and 52.22 ± 8.4%, respectively, with surface charge switching from negative to positive at pH 7.4 and pH 6.0, respectively. High-resolution transmission electron microscopy (HR-TEM) characterization of the quatsomes showed spherical vesicles with MHD similar to the one obtained from the zeta-sizer. The in vitro drug release of VCM from the quatsomes was faster at pH 6.0 compared to pH 7.4. The minimum inhibitory concentration (MIC) of the drug loaded quatsomes against MRSA was 32-fold and 8-fold lower at pH 6.0 and pH 7.4, respectively, compared to bare VCM, demonstrating the pH-responsiveness of the quatsomes and the enhanced activity of VCM at acidic pH. The drug-loaded quatsomes demonstrated higher electrical conductivity and a decrease in protein and deoxyribonucleic acid (DNA) concentrations as compared to the bare drug. This confirmed greater MRSA membrane damage, compared to treatment with bare VCM. The flow cytometry study showed that the drug-loaded quatsomes had a similar bactericidal killing effect on MRSA despite a lower (8-fold) VCM concentration when compared to the bare VCM. Fluorescence microscopy revealed the ability of the drug-loaded quatsomes to eradicate MRSA biofilms. The in vivo studies in a skin infection mice model showed that groups treated with VCM-loaded quatsomes had a 13-fold decrease in MRSA CFUs when compared to the bare VCM treated groups. This study confirmed the potential of pH-responsive VCM-StBAclm quatsomes as an effective delivery system for targeted delivery and for enhancing the activity of antibiotics.


2020 ◽  
Vol 11 (10) ◽  
pp. 1752-1762 ◽  
Author(s):  
Naruphorn Dararatana ◽  
Farzad Seidi ◽  
Juliette Hamel ◽  
Daniel Crespy

Polymers with pH-responsive properties display anticorrosion performance.


2016 ◽  
Vol 37 (1) ◽  
pp. 290-304 ◽  
Author(s):  
Ume Ruqia Tulain ◽  
Mahmood Ahmad ◽  
Ayesha Rashid ◽  
Muhammad Zubair Malik ◽  
Furqan Muhammad Iqbal

Sign in / Sign up

Export Citation Format

Share Document