Tunable Plasmonic Coupling in Self-Assembled Binary Nanocrystal Superlattices Studied by Correlated Optical Microspectrophotometry and Electron Microscopy

Nano Letters ◽  
2013 ◽  
Vol 13 (3) ◽  
pp. 1291-1297 ◽  
Author(s):  
Xingchen Ye ◽  
Jun Chen ◽  
Benjamin T. Diroll ◽  
Christopher B. Murray
ACS Nano ◽  
2010 ◽  
Vol 4 (4) ◽  
pp. 2374-2381 ◽  
Author(s):  
Jun Chen ◽  
Xingchen Ye ◽  
Christopher B. Murray

Nano Letters ◽  
2017 ◽  
Vol 17 (3) ◽  
pp. 1387-1394 ◽  
Author(s):  
Taejong Paik ◽  
Hongseok Yun ◽  
Blaise Fleury ◽  
Sung-Hoon Hong ◽  
Pil Sung Jo ◽  
...  

2007 ◽  
Vol 6 (2) ◽  
pp. 115-121 ◽  
Author(s):  
Jeffrey J. Urban ◽  
Dmitri V. Talapin ◽  
Elena V. Shevchenko ◽  
Cherie R. Kagan ◽  
Christopher B. Murray

2003 ◽  
Vol 107 (30) ◽  
pp. 7406-7413 ◽  
Author(s):  
Yvonne Joseph ◽  
Isabelle Besnard ◽  
Miriam Rosenberger ◽  
Berit Guse ◽  
Heinz-Georg Nothofer ◽  
...  

1999 ◽  
Vol 5 (6) ◽  
pp. 413-419 ◽  
Author(s):  
Bernardo R.A. Neves ◽  
Michael E. Salmon ◽  
Phillip E. Russell ◽  
E. Barry Troughton

Abstract: In this work, we show how field emission–scanning electron microscopy (FE-SEM) can be a useful tool for the study of self-assembled monolayer systems. We have carried out a comparative study using FE-SEM and atomic force microscopy (AFM) to assess the morphology and coverage of self-assembled monolayers (SAM) on different substrates. The results show that FE-SEM images present the same qualitative information obtained by AFM images when the SAM is deposited on a smooth substrate (e.g., mica). Further experiments with rough substrates (e.g., Al grains on glass) show that FE-SEM is capable of unambiguously identifying SAMs on any type of substrate, whereas AFM has significant difficulties in identifying SAMs on rough surfaces.


Sign in / Sign up

Export Citation Format

Share Document