Lithiation of SiO2 in Li-Ion Batteries: In Situ Transmission Electron Microscopy Experiments and Theoretical Studies

Nano Letters ◽  
2014 ◽  
Vol 14 (12) ◽  
pp. 7161-7170 ◽  
Author(s):  
Yuefei Zhang ◽  
Yujie Li ◽  
Zhenyu Wang ◽  
Kejie Zhao
Nano Letters ◽  
2014 ◽  
Vol 14 (3) ◽  
pp. 1293-1299 ◽  
Author(s):  
Patricia Abellan ◽  
B. Layla Mehdi ◽  
Lucas R. Parent ◽  
Meng Gu ◽  
Chiwoo Park ◽  
...  

2019 ◽  
Vol 114 (11) ◽  
pp. 113901 ◽  
Author(s):  
Shaobo Han ◽  
Yuanmin Zhu ◽  
Chao Cai ◽  
Jiakun Zhu ◽  
Wenbin Han ◽  
...  

Inorganics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 85
Author(s):  
Maryam Golozar ◽  
Raynald Gauvin ◽  
Karim Zaghib

This work summarizes the most commonly used in situ techniques for the study of Li-ion batteries from the micro to the atomic level. In situ analysis has attracted a great deal of interest owing to its ability to provide a wide range of information about the cycling behavior of batteries from the beginning until the end of cycling. The in situ techniques that are covered are: X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Scanning Transmission Electron Microscopy (STEM). An optimized setup is required to be able to use any of these in situ techniques in battery applications. Depending on the type of data required, the available setup, and the type of battery, more than one of these techniques might be needed. This study organizes these techniques from the micro to the atomic level, and shows the types of data that can be obtained using these techniques, their advantages and their challenges, and possible strategies for overcoming these challenges.


2014 ◽  
Vol 20 (4) ◽  
pp. 1029-1037 ◽  
Author(s):  
Raymond R. Unocic ◽  
Xiao-Guang Sun ◽  
Robert L. Sacci ◽  
Leslie A. Adamczyk ◽  
Daan Hein Alsem ◽  
...  

AbstractComplex, electrochemically driven transport processes form the basis of electrochemical energy storage devices. The direct imaging of electrochemical processes at high spatial resolution and within their native liquid electrolyte would significantly enhance our understanding of device functionality, but has remained elusive. In this work we use a recently developed liquid cell for in situ electrochemical transmission electron microscopy to obtain insight into the electrolyte decomposition mechanisms and kinetics in lithium-ion (Li-ion) batteries by characterizing the dynamics of solid electrolyte interphase (SEI) formation and evolution. Here we are able to visualize the detailed structure of the SEI that forms locally at the electrode/electrolyte interface during lithium intercalation into natural graphite from an organic Li-ion battery electrolyte. We quantify the SEI growth kinetics and observe the dynamic self-healing nature of the SEI with changes in cell potential.


Author(s):  
J. T. Sizemore ◽  
D. G. Schlom ◽  
Z. J. Chen ◽  
J. N. Eckstein ◽  
I. Bozovic ◽  
...  

Investigators observe large critical currents for superconducting thin films deposited epitaxially on single crystal substrates. The orientation of these films is often characterized by specifying the unit cell axis that is perpendicular to the substrate. This omits specifying the orientation of the other unit cell axes and grain boundary angles between grains of the thin film. Misorientation between grains of YBa2Cu3O7−δ decreases the critical current, even in those films that are c axis oriented. We presume that these results are similar for bismuth based superconductors and report the epitaxial orientations and textures observed in such films.Thin films of nominally Bi2Sr2CaCu2Ox were deposited on MgO using molecular beam epitaxy (MBE). These films were in situ grown (during growth oxygen was incorporated and the films were not oxygen post-annealed) and shuttering was used to encourage c axis growth. Other papers report the details of the synthesis procedure. The films were characterized using x-ray diffraction (XRD) and transmission electron microscopy (TEM).


Sign in / Sign up

Export Citation Format

Share Document