Catalytic Hydrogen Generation from the Hydrolysis of Silanes by Ruthenium Complexes

2011 ◽  
Vol 30 (15) ◽  
pp. 4008-4013 ◽  
Author(s):  
Sze Tat Tan ◽  
Jun Wei Kee ◽  
Wai Yip Fan
2018 ◽  
Vol 5 (4) ◽  
pp. 760-772 ◽  
Author(s):  
Hongming Sun ◽  
Jing Meng ◽  
Lifang Jiao ◽  
Fangyi Cheng ◽  
Jun Chen

Efficient hydrogen generation and storage is an essential prerequisite of a future hydrogen economy.


Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1612
Author(s):  
Zhaoyu Wen ◽  
Qiong Fu ◽  
Jie Wu ◽  
Guangyin Fan

Simple and efficient synthesis of a nano-catalyst with an excellent catalytic property for hydrogen generation from hydrolysis of dimethyl amine-borane (DMAB) is a missing piece. Herein, effective and recycled palladium (Pd) nanoparticles (NPs) supported on soft nitriding porous carbon (NPC) are fabricated and applied for DMAB hydrolysis. It is discovered that the soft nitriding via a low-temperature urea-pretreatment induces abundant nitrogen-containing species on the NPC support, thus promoting the affinity of the Pd precursor and hindering the agglomeration of formed Pd NPs onto the NPC surface during the preparation process. Surface-clean Pd NPs with a diameter of sub-2.0 nm deposited on the NPC support (Pd/NPC) exhibit an outstanding catalytic performance with a turnover frequency (TOF) of 2758 h−1 toward DMAB hydrolysis, better than many previous reported Pd-based catalysts. It should be emphasized that the Pd/NPC also possesses a good stability without an obvious decrease in catalytic activity for DMAB hydrolysis in five successive recycling runs. This study provides a facile but efficient way for preparing high-performance Pd catalysts for catalytic hydrogen productions.


2019 ◽  
Vol 26 (01) ◽  
pp. 1850132 ◽  
Author(s):  
HUI ZHAO ◽  
YANPING TIAN ◽  
YA LIU ◽  
YUQING MIAO

The amorphous nickel/carbon microspheres (Ni/C-MSs) were synthesized through dehydration and carbonization of glucose at high temperature and high pressure. The obtained Ni/C-MSs and the Ni/C-800-MSs (calcined at 800[Formula: see text]C) were thoroughly characterized on morphology, composition and catalytic performance. It is found that the Ni/C-MSs showed good catalytic performance for hydrogen generation from aqueous H3NBH3 at room temperature. Urea was oxidized electrocatalytically by Ni/C-800-MSs in alkaline medium, indicating a viable method for wastewater remediation and simultaneous production of valuable hydrogen.


2014 ◽  
Vol 50 (54) ◽  
pp. 7191-7194 ◽  
Author(s):  
Alan Kay Liang Teo ◽  
Wai Yip Fan

Hydrolytic oxidation of silanes to dihydrogen and silanols catalyzed by an iron-based catalyst.


RSC Advances ◽  
2014 ◽  
Vol 4 (71) ◽  
pp. 37645-37648 ◽  
Author(s):  
Alan Kay Liang Teo ◽  
Wai Yip Fan

Highly efficient silver nitrate mediated hydrogen generation from the hydrolysis of organosilanes.


2020 ◽  
Vol 31 (13) ◽  
pp. 134003 ◽  
Author(s):  
Yuantao Pei ◽  
Liqiong Wang ◽  
Liang Huang ◽  
Yuetong Hu ◽  
Quanli Jia ◽  
...  

2012 ◽  
Vol 519 ◽  
pp. 87-91 ◽  
Author(s):  
Xia Ni Huang ◽  
Zhang Han Wu ◽  
Ke Cao ◽  
Wen Zeng ◽  
Chun Ju Lv ◽  
...  

In the present investigation, the Al-C-KCl composite powders were prepared by a ball milling processing in an attempt to improve the hydrogen evolution capacity of aluminum in water. The results showed that the hydrogen generation reaction is affected by KCl amount, preparation processing, initial aluminum particle size and reaction temperature. Increasing KCl amount led to an increased hydrogen generation volume. The use of aluminum powder with a fine particle size could promote the aluminum hydrolysis reaction and get an increased hydrogen generation rate. The reaction temperature played an important role in hydrogen generation rate and the maximum hydrogen generation rate of 44.8 cm3 min-1g-1of Al was obtained at 75oC. The XRD results identified that the hydrolysis byproducts are bayerite (Al(OH)3) and boehmite (AlOOH).


Sign in / Sign up

Export Citation Format

Share Document