scholarly journals “Status quo” ATR FT-IR spectroscopic characterization of the bonding interface of cottonseed protein adhesives with wood veneers

Author(s):  
Sunghyun Nam ◽  
Zhongqi He ◽  
H. Cheng
2018 ◽  
Vol 73 (11) ◽  
pp. 753-758
Author(s):  
Enrique J. Baran ◽  
Oscar E. Piro ◽  
Gustavo A. Echeverría ◽  
Beatriz S. Parajón-Costa

AbstractThe crystal structure of pyridinium 6-methyl-1,2,3,-oxathiazine-4(3H)-one-2,2-dioxide [(C5NH6)(C4H4NO4S)], for short, pyH(ace), was determined by X-ray diffraction methods. It crystallizes as a twin in the monoclinic space group P21/c with a=6.9878(9), b=7.2211(7), c=21.740(2) Å, β=91.67(1)° and Z=4 molecules per unit cell. The structure was determined employing 1599 reflections with I>2σ(I) from one of the twin domains and refined employing 2092 reflections from both crystal domains to an agreement R1 factor of 0.0466. Besides electrostatic attractions, intermolecular pyH···O=C(ace) hydrogen bonds stabilize the acesulfamate anion and the pyridinium cation into planar discrete units parallel to the (100) crystal plane. The units form stacks of alternating ace− and pyH+ ions along the a axis that favors inter-ring π–π interactions. The Fourier transform-infrared (FT-IR) spectrum of the compound was recorded and is briefly discussed. Some comparisons with related pyridinium saccharinate salts are also made.


2015 ◽  
Vol 2 (2) ◽  
pp. 70-73
Author(s):  
Kannan.P ◽  
Thambidurai.S ◽  
Suresh.N

Growth of optically transparent single crystals of thiourea succinic acid (TUSA) was grown successfully from aqueous solution by slow evaporation technique. The crystal structure was elucidated using the single crystal XRD. The various functional groups and the modes of vibrations were identified by FT-IR spectroscopic analysis. The optical absorption studies indicate that the optical transparency window is quite wide making its suitable for NLO applications. Thermal stability of the crown crystal carried out by TGA-DTA analysis.


2018 ◽  
Vol 91 (3) ◽  
pp. 389-396 ◽  
Author(s):  
Yanshan Yin ◽  
Jie Yin ◽  
Wei Zhang ◽  
Hong Tian ◽  
Zhangmao Hu ◽  
...  

2020 ◽  
Vol 45 (5) ◽  
Author(s):  
V.O. Uduah ◽  
J.J. Gongden ◽  
M.L. Kagoro ◽  
K.K. Gurumyen ◽  
Y.N. Lohdip ◽  
...  

This work presents a dry synthesis of Iron (III) complex with urea isolated from human urine and Fe (III) obtained from iron rust particles. Iron (III), PI (Purified iron rust), was isolated from iron rust in 10% hydrochloric acid, HCl and distilled water respectively. The complex was synthesized via dry-synthesis method using the melted urea as reaction medium. The isolated Fe (III) was characterized by elemental analysis which was done using XRF Cu-Zn method. The complex was prepared in a 1:4 metal to ligand (M-L) ratio. The stoichiometry of reaction indicate a 1:3 ratio of M-L (Fe-U). The complex was characterized by FT-IR, UV-vis, XRF and XRD spectroscopic techniques. The Fe (III) isolate and Fe-U complex shows percentage yields of 35.7% and ~92% respectively. The elemental and oxide composition of Fe and Fe2O3 (i.e., PI) were 40.387% and 57.753% respectively. The results obtained from the characterization of the iron-urea complex, IUC, indicate FT-IR result as symmetric and asymmetric frequencies with peaks of a combination band of Vs (NH) and Vas (NH), C=O and V (C-N) all stretched, XRD showed the crystal to be amorphous. The elemental and oxide composition of the Fe and Fe2O3 in IUC were 40.007 and 44.201 respectively. The results obtained revealed that useful complexes can be synthesized easily from waste materials, such as urine and iron rust particles, which complement Green chemistry.


Sign in / Sign up

Export Citation Format

Share Document