A novel reactor configuration (CFIR) for contiuous dowstream processing

Author(s):  
Nitika Nitika ◽  
Anurag Singh Rathore ◽  
Nikhil Kateja
Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 388
Author(s):  
Ihtisham Ul Haq Shami ◽  
Bing Wu

In this study, three gravity-driven membrane (GDM) reactors with flat sheet membrane modules and various biocarriers (synthetic fibers, lava stones, and sands) were operated for municipal wastewater treatment. The effects of water head, periodically cleaning protocol, and operation temperature on the GDM reactor performance were illustrated in terms of membrane performance and water quality. The results indicated that: (1) the cake layer fouling was predominant (>~85%), regardless of reactor configuration and operation conditions; (2) under lower water head, variable water head benefited in achieving higher permeate fluxes due to effective relaxation of the compacted cake layers; (3) the short-term chemical cleaning (30–60 min per 3–4 days) improved membrane performance, especially when additional physical shear force was implemented; (4) the lower temperature had negligible effect on the GDM reactors packed with Icelandic lava stones and sands. Furthermore, the wastewater treatment costs of the three GDM reactors were estimated, ranging between 0.31 and 0.37 EUR/m3, which was greatly lower than that of conventional membrane bioreactors under lower population scenarios. This sheds light on the technical and economic feasibility of biocarrier-facilitated GDM systems for decentralized wastewater treatment in Iceland.


2018 ◽  
Vol 924 ◽  
pp. 100-103 ◽  
Author(s):  
Örjan Danielsson

Understanding the chemistry in CVD of SiC is important to be able to control, improve and scale up the process to become industrially competitive. A thorough understanding have so far been difficult to achieve due to the complex nature of the process. Through modeling tools, and a systematic approach when constructing the chemical models, new insights to the SiC CVD chemistry can be obtained. Using a general model that is independent on the choice of precursors and reactor configuration, and by coupling modeling results to experimental findings, we here show that SiCl2 and SiH2 previously suggested as the main silicon bearing growth species in the chlorinated and standard chemistries, respectively, does not contribute significantly to the SiC growth, and that the main active species are C2H2, CH3, Si, and SiCl.


Sign in / Sign up

Export Citation Format

Share Document