Leaf gas exchange of cassava as affected by quality of planting material and water stress

1998 ◽  
Vol 34 (3) ◽  
pp. 409-418 ◽  
Author(s):  
M.G. Cayon ◽  
M.A. El-Sharkawy ◽  
L.F. Cadavid
OENO One ◽  
2017 ◽  
Vol 51 (1) ◽  
Author(s):  
Vivian Zufferey ◽  
Jean-Laurent Spring ◽  
Thibaut Verdenal ◽  
Agnès Dienes ◽  
Sandrine Belcher ◽  
...  

<p><strong>Aims : </strong>The aims of this study were to investigate the physiological behavior (plant hydraulics, gas exchange) of the cultivar Pinot Noir in the field under progressively increasing conditions of water stress and analyze the effects of drought on grape and wine quality.</p><p><strong>Methods and results : </strong>Grapevines of the variety <em>Vitis vinifera</em> L. cv. Pinot Noir (clone 9-18, grafted onto 5BB) were subjected to different water regimes (irrigation treatments) over the growing season. Physiological indicators were used to monitor plant water status (leaf and stem water potentials and relative carbon isotope composition (d<sup>13</sup>C) in must sugars). Leaf gas exchange (net photosynthesis A and transpiration E), leaf stomatal conductance (gs), specific hydraulic conductivity in petioles (K<sub>petiole</sub>), yield components, berry composition at harvest, and organoleptic quality of wines were analyzed over a 7-year period, between 2009 and 2015, under relatively dry conditions in the canton of Wallis, Switzerland. A progressively increasing water deficit, observed throughout the season, reduced the leaf gas exchange (A and E) and gs in non-irrigated vines. The intrinsic water use efficiency (WUE<sub>i</sub>, A/gs) increased during the growing season and was greater in water-stressed vines than in well-watered vines (irrigated vines). This rise in WUE<sub>i</sub> was correlated with an increase in d<sup>13</sup>C in must sugars at harvest. Drought led to decreases in K<sub>petiole</sub>, E and sap flow in stems. A decrease in vine plant vigor was observed in vines that had been subjected to water deficits year after year. Moderate water stress during ripening favored sugar accumulation in berries and caused a reduction in total acidic and malic contents in must and available nitrogen content (YAN). Wines produced from water-stressed vines had a deeper color and were richer in anthocyanins and phenol compounds compared with wines from well-watered vines with no water stress. The vine water status greatly influenced the organoleptic quality of the resulting wines. Wines made from non-irrigated vines with a water deficit presented more structure and higher-quality tannins. They were also judged to be more full-bodied and with blended tannins than those made from irrigated vines.</p><p><strong>Conclusions : </strong>Grape ripening and resulting Pinot Noir wines were found to be largely dependent on the water supply conditions of the vines during the growing season, which influenced gas exchange and plant hydraulics.</p><p><strong>Significance and impact of the study : </strong>Plant water status constitutes a key factor in leaf gas exchange, canopy water use efficiency, berry composition and wine quality.</p>


OENO One ◽  
2020 ◽  
Vol 54 (3) ◽  
pp. 553-568
Author(s):  
Vivian Zufferey ◽  
Thibaut Verdenal ◽  
Agnès Dienes ◽  
Sandrine Belcher ◽  
Fabrice Lorenzini ◽  
...  

Aims: The aim of the present study was to analyse the impact of different water regimes on the physiological and agronomical behavior of an aromatic white grapevine (cv. Arvine) by means of various levels of irrigation. The consequences of the plant water status were evaluated by carrying out a chemical (aromatic precursors) and sensorial analysis of the resulting wines.Methods and results: Adult vines of Vitis vinifera L. cv. Arvine grafted onto 5BB were subjected to different water regimes (various levels of irrigation) during the growing season. Physiological indicators were used to monitor the plant water status [pre-dawn leaf (ΨPD) and stem (ΨSTEM) water potentials and carbon isotope composition (d13C) in the must]. Gas exchange (net photosynthesis AN and transpiration E), stomatal conductance (gs), yield parameters, berry composition at harvest, analysis of potential grape aromatic properties (glycosyl-glucose G-G, precursor 3-mercaptohexanol P 3-MH) and the sensorial quality of wines were analysed over a period of 8 consecutive years (2009-2016) in the Agroscope experimental vineyard in Leytron under the relatively dry conditions of the Rhône valley in Wallis, Switzerland.In the non-irrigated vines, the progressively increasing water deficit observed over the season reduced the leaf gas exchange (AN and E) and gs. The intrinsic water use efficiency (WUEi, A/gs) increased over the season and was greater in the vines that had suffered water restriction than in the irrigated vines. The rise in WUEi was correlated with an increase in d13C in the must sugars at harvest. A decrease in plant vigor was observed in the water stressed vines over multiple years. Moderate to high water stress during fruit ripening lowered the contents of total and malic acidity in the musts and the content of yeast available nitrogen (YAN). On the other hand, contents in sugar and the aromatic precursor (P-3MH) in berries were not influenced by the vine water status. The G-G values for berries increased with rising water stress in the non-irrigated vines. The wines from the plants subjected to water stress and to yeast available nitrogen deficiency (non-irrigated vines during hot and dry seasons) had a less distinctive typicity, and developed a lower aromatic expression with a more bitter taste, than the wines from the non-stressed plants. Overall, and compared with the stressed vines, the organoleptic characteristics and quality of Arvine wines from vines which had not undergone restrictions in water and nitrogen during the growing season were appreciated more.Conclusions: The vine’s physiological behavior (leaf gas exchange, plant vigor) and agronomic parameters (yield, berry composition), together with the quality of white aromatic Arvine wines, were strongly influenced by vine water regimes during the growing season.Significance and impact of the study: Vine water status and must nitrogen contents are key factors in grape composition and in the sensorial quality of resulting aromatic white wines.


Author(s):  
Lourenço M. C. Branco ◽  
Claudivan F. de Lacerda ◽  
Albanise B. Marinho ◽  
Carlos H. C. de Sousa ◽  
Amanda S. F. Calvet ◽  
...  

ABSTRACT The objective of this study was to evaluate the influence of irrigation with brackish water on the production of bamboo seedlings (Bambusa vulgaris). The experiment was carried out at the Fazenda Experimental Piroás, in the municipality of Redenção, CE, Brazil (4° 14’ 53” S, 38° 45’ 10” W, and altitude of 230 m), in a completely randomized design with five treatments and six repetitions. The treatments consisted of five irrigation water electrical conductivity (ECw): 0.5 (control); 1.5; 2.5; 3.5 and 4.5 dS m-1. At 120 days after the beginning of the application of the treatments the leaf gas exchange, relative chlorophyll index (RCI), plant height (H), shoot dry matter (SDM), H/SDM ratio, and the concentrations of Na+ and K+ in stems and leaves were evaluated. Salt tolerance indexes were calculated based on SDM, H, photosynthesis rate and RCI. The increase in the ECw reduced leaf gas exchange, and the reduction in the photosynthesis rate was caused by stomatal and non-stomatal effects. The salinity affected negatively the growth and quality of bamboo seedlings, with the greatest effects being with ECw equal to or greater than 2.5 dS m-1. Bamboo seedlings present Na+ retention in the stems and low Na+/K+ ratio in the leaves. Bamboo seedlings are tolerant to salinity up to 1.5 dS m-1, indicating that waters with this salinity can be used for seedling production of this species, without loss of growth and quality.


1994 ◽  
Vol 86 (4) ◽  
pp. 625-636 ◽  
Author(s):  
L. H. Allen ◽  
R. R. Valle ◽  
J. W. Mishoe ◽  
J. W. Jones

2018 ◽  
pp. 479-484
Author(s):  
I. Di Mola ◽  
Y. Rouphael ◽  
L. Ottaiano ◽  
L.G. Duri ◽  
M. Mori ◽  
...  

2010 ◽  
Vol 40 (6) ◽  
pp. 1290-1294 ◽  
Author(s):  
Inês Cechin ◽  
Natália Corniani ◽  
Terezinha de Fátima Fumis ◽  
Ana Catarina Cataneo

The effects of water stress and rehydration on leaf gas exchange characteristics along with changes in lipid peroxidation and pirogalol peroxidase (PG-POD) were studied in mature and in young leaves of sunflower (Helianthus annuus L.), which were grown in a greenhouse. Water stress reduced photosynthesis (Pn), stomatal conductance (g s), and transpiration (E) in both young and mature leaves. However, the amplitude of the reduction was dependent on leaf age. The intercellular CO2 concentration (Ci) was increased in mature leaves but it was not altered in young leaves. Instantaneous water use efficiency (WUE) in mature stressed leaves was reduced when compared to control leaves while in young stressed leaves it was maintained to the same level as the control. After 24h of rehydration, most of the parameters related to gas exchange recovered to the same level as the unstressed plants except gs and E in mature leaves. Water stress did not activated PG-POD independently of leaf age. However, after rehydration the enzyme activity was increased in mature leaves and remained to the same as the control in young leaves. Malondialdehyde (MDA) content was increased by water stress in both mature and young leaves. The results suggest that young leaves are more susceptible to water stress in terms of gas exchange characteristics than mature leaves although both went through oxidative estresse.


Crop Science ◽  
1996 ◽  
Vol 36 (4) ◽  
pp. 922-928 ◽  
Author(s):  
K. L. Faver ◽  
T. J. Gerik ◽  
P. M. Thaxton ◽  
K. M. El‐Zik

2016 ◽  
Vol 40 (3) ◽  
pp. 455-464 ◽  
Author(s):  
Maria da Assunção Machado Rocha ◽  
Claudivan Feitosa de Lacerda ◽  
Marlos Alves Bezerra ◽  
Francisca Edineide Lima Barbosa ◽  
Hernandes de Oliveira Feitosa ◽  
...  

ABSTRACT The low availability of water in the soil is one of the limiting factors for the growth and survival of plants. The objective of this study was to evaluate the responses of physiological processes in early growth of guanandi (Calophyllum brasilense Cambess), African mahogany (Khayai vorensis A. Chev) and oiti (Licaniato mentosa Benth Fritsch) over a period of water stress and other of rehydration in the soil with and without addition of organic matter. The study was conducted in a greenhouse and the experimental design was completely randomised into a 3 x 2 x 2 factorial scheme, comprising three species (guanandi, African mahogany, and oiti), two water regimes (with and without water restriction) and two levels of organic fertilisation (with and without the addition of organic matter). Irrigation was suspended for 15 days in half of the plants, while the other half (control) continued to receive daily irrigation, the soil being maintained near field capacity for these plants. At the end of the stress period, the plants were again irrigated for 15 days to determine their recovery. Water restriction reduced leaf water potential and gas exchange in the three species under study, more severely in soil with no addition of organic matter. The addition of this input increased soil water retention and availability to the plants during the suspension of irrigation, reducing the detrimental effects of the stress. During the period of rehydration, there was strong recovery of water status and leaf gas exchange. However recovery was not complete, suggesting that some of the effects caused by stress irreversibly affected cell structures and functions. However, of the species being studied, African mahogany displayed a greater sensitivity to stress, with poorer recovery.


Crop Science ◽  
1996 ◽  
Vol 36 (4) ◽  
Author(s):  
K. L. Faver ◽  
T. J. Gerik ◽  
P. M. Thaxton ◽  
K. M. El‐Zik

Sign in / Sign up

Export Citation Format

Share Document