scholarly journals The influence of vine water regime on the leaf gas exchange, berry composition and wine quality of Arvine grapes in Switzerland

OENO One ◽  
2020 ◽  
Vol 54 (3) ◽  
pp. 553-568
Author(s):  
Vivian Zufferey ◽  
Thibaut Verdenal ◽  
Agnès Dienes ◽  
Sandrine Belcher ◽  
Fabrice Lorenzini ◽  
...  

Aims: The aim of the present study was to analyse the impact of different water regimes on the physiological and agronomical behavior of an aromatic white grapevine (cv. Arvine) by means of various levels of irrigation. The consequences of the plant water status were evaluated by carrying out a chemical (aromatic precursors) and sensorial analysis of the resulting wines.Methods and results: Adult vines of Vitis vinifera L. cv. Arvine grafted onto 5BB were subjected to different water regimes (various levels of irrigation) during the growing season. Physiological indicators were used to monitor the plant water status [pre-dawn leaf (ΨPD) and stem (ΨSTEM) water potentials and carbon isotope composition (d13C) in the must]. Gas exchange (net photosynthesis AN and transpiration E), stomatal conductance (gs), yield parameters, berry composition at harvest, analysis of potential grape aromatic properties (glycosyl-glucose G-G, precursor 3-mercaptohexanol P 3-MH) and the sensorial quality of wines were analysed over a period of 8 consecutive years (2009-2016) in the Agroscope experimental vineyard in Leytron under the relatively dry conditions of the Rhône valley in Wallis, Switzerland.In the non-irrigated vines, the progressively increasing water deficit observed over the season reduced the leaf gas exchange (AN and E) and gs. The intrinsic water use efficiency (WUEi, A/gs) increased over the season and was greater in the vines that had suffered water restriction than in the irrigated vines. The rise in WUEi was correlated with an increase in d13C in the must sugars at harvest. A decrease in plant vigor was observed in the water stressed vines over multiple years. Moderate to high water stress during fruit ripening lowered the contents of total and malic acidity in the musts and the content of yeast available nitrogen (YAN). On the other hand, contents in sugar and the aromatic precursor (P-3MH) in berries were not influenced by the vine water status. The G-G values for berries increased with rising water stress in the non-irrigated vines. The wines from the plants subjected to water stress and to yeast available nitrogen deficiency (non-irrigated vines during hot and dry seasons) had a less distinctive typicity, and developed a lower aromatic expression with a more bitter taste, than the wines from the non-stressed plants. Overall, and compared with the stressed vines, the organoleptic characteristics and quality of Arvine wines from vines which had not undergone restrictions in water and nitrogen during the growing season were appreciated more.Conclusions: The vine’s physiological behavior (leaf gas exchange, plant vigor) and agronomic parameters (yield, berry composition), together with the quality of white aromatic Arvine wines, were strongly influenced by vine water regimes during the growing season.Significance and impact of the study: Vine water status and must nitrogen contents are key factors in grape composition and in the sensorial quality of resulting aromatic white wines.

OENO One ◽  
2017 ◽  
Vol 51 (1) ◽  
Author(s):  
Vivian Zufferey ◽  
Jean-Laurent Spring ◽  
Thibaut Verdenal ◽  
Agnès Dienes ◽  
Sandrine Belcher ◽  
...  

<p><strong>Aims : </strong>The aims of this study were to investigate the physiological behavior (plant hydraulics, gas exchange) of the cultivar Pinot Noir in the field under progressively increasing conditions of water stress and analyze the effects of drought on grape and wine quality.</p><p><strong>Methods and results : </strong>Grapevines of the variety <em>Vitis vinifera</em> L. cv. Pinot Noir (clone 9-18, grafted onto 5BB) were subjected to different water regimes (irrigation treatments) over the growing season. Physiological indicators were used to monitor plant water status (leaf and stem water potentials and relative carbon isotope composition (d<sup>13</sup>C) in must sugars). Leaf gas exchange (net photosynthesis A and transpiration E), leaf stomatal conductance (gs), specific hydraulic conductivity in petioles (K<sub>petiole</sub>), yield components, berry composition at harvest, and organoleptic quality of wines were analyzed over a 7-year period, between 2009 and 2015, under relatively dry conditions in the canton of Wallis, Switzerland. A progressively increasing water deficit, observed throughout the season, reduced the leaf gas exchange (A and E) and gs in non-irrigated vines. The intrinsic water use efficiency (WUE<sub>i</sub>, A/gs) increased during the growing season and was greater in water-stressed vines than in well-watered vines (irrigated vines). This rise in WUE<sub>i</sub> was correlated with an increase in d<sup>13</sup>C in must sugars at harvest. Drought led to decreases in K<sub>petiole</sub>, E and sap flow in stems. A decrease in vine plant vigor was observed in vines that had been subjected to water deficits year after year. Moderate water stress during ripening favored sugar accumulation in berries and caused a reduction in total acidic and malic contents in must and available nitrogen content (YAN). Wines produced from water-stressed vines had a deeper color and were richer in anthocyanins and phenol compounds compared with wines from well-watered vines with no water stress. The vine water status greatly influenced the organoleptic quality of the resulting wines. Wines made from non-irrigated vines with a water deficit presented more structure and higher-quality tannins. They were also judged to be more full-bodied and with blended tannins than those made from irrigated vines.</p><p><strong>Conclusions : </strong>Grape ripening and resulting Pinot Noir wines were found to be largely dependent on the water supply conditions of the vines during the growing season, which influenced gas exchange and plant hydraulics.</p><p><strong>Significance and impact of the study : </strong>Plant water status constitutes a key factor in leaf gas exchange, canopy water use efficiency, berry composition and wine quality.</p>


OENO One ◽  
2018 ◽  
Vol 52 (4) ◽  
Author(s):  
Vivian Zufferey ◽  
Thibaut Verdenal ◽  
Agnès Dienes ◽  
Sandrine Belcher ◽  
Fabrice Lorenzini ◽  
...  

Aims: The aim of this research was to study the physiological and agronomical behaviors (leaf gas exchange, plant vigor, mineral supply, and yield components) of the Chasselas grapevine subjected to different water regimes during the growing season. The resulting grape and wine qualities were also determined.Methods and results: Adult vines of Vitis vinifera L. cv. Chasselas (clone 14/33-4, grafted onto 5BB) were subjected to different water regimes (various levels of irrigation) during the growing season. Physiological indicators were used to monitor the plant water status [the predawn leaf (. Leaf photosynthesis (A) and transpiration (E), stomatal conductance (gs), vulnerability to cavitation, yield parameters, berry composition at harvest, and organoleptic quality of wines were analyzed over a period of eight consecutive years between 2009 and 2016, under the relatively dry conditions of the Canton of Wallis, Switzerland.In non-irrigated vines, the progressively increasing water deficit observed over the season reduced the leaf gas exchange (A and E) and gs. The intrinsic water use efficiency (WUEi, A/gs) increased over the season and was greater in vines that had suffered water restriction than in irrigated vines. The rise in WUEi was correlated with an increase in d13C in the must sugars at harvest. Vulnerability to cavitation (embolism phenomenon) increased with increasing water deficit in the non-irrigated vines with covered soils. A decrease in plant vigor was observed in the vines that had been subjected to water restrictions over multiple years. Moderate water stress during fruit ripening was favorable for sugar accumulation in berries and lowered the contents of total and malic acidity in the musts and the content of available nitrogen (YAN). Overall, the organoleptic characteristics and quality of Chasselas wines were little influenced by the vine water regimes, with the exception of the hot, dry season in 2009 (and, to a lesser degree, in 2011). In those years, the quality of the wines from the irrigated vines, which had not suffered any water stress, received a better appreciation. Bitterness was generally greater in samples from the non-irrigated vineyards that had suffered from drought than in samples from the irrigated vines. No significant differences in the aroma and wine structure were measured during the study period, regardless of the vine irrigation status.Conclusions: The physiological behavior (gas exchange, plant vigor, and mineral supplies) and grape ripening in Chasselas vines were largely dependent on the water supply conditions in the vineyard during the growing season.Significance and impact of the study: Vine water status is a key factor in leaf gas exchange, canopy water use efficiency, berry composition and, lastly, wine quality.


2016 ◽  
Vol 40 (3) ◽  
pp. 455-464 ◽  
Author(s):  
Maria da Assunção Machado Rocha ◽  
Claudivan Feitosa de Lacerda ◽  
Marlos Alves Bezerra ◽  
Francisca Edineide Lima Barbosa ◽  
Hernandes de Oliveira Feitosa ◽  
...  

ABSTRACT The low availability of water in the soil is one of the limiting factors for the growth and survival of plants. The objective of this study was to evaluate the responses of physiological processes in early growth of guanandi (Calophyllum brasilense Cambess), African mahogany (Khayai vorensis A. Chev) and oiti (Licaniato mentosa Benth Fritsch) over a period of water stress and other of rehydration in the soil with and without addition of organic matter. The study was conducted in a greenhouse and the experimental design was completely randomised into a 3 x 2 x 2 factorial scheme, comprising three species (guanandi, African mahogany, and oiti), two water regimes (with and without water restriction) and two levels of organic fertilisation (with and without the addition of organic matter). Irrigation was suspended for 15 days in half of the plants, while the other half (control) continued to receive daily irrigation, the soil being maintained near field capacity for these plants. At the end of the stress period, the plants were again irrigated for 15 days to determine their recovery. Water restriction reduced leaf water potential and gas exchange in the three species under study, more severely in soil with no addition of organic matter. The addition of this input increased soil water retention and availability to the plants during the suspension of irrigation, reducing the detrimental effects of the stress. During the period of rehydration, there was strong recovery of water status and leaf gas exchange. However recovery was not complete, suggesting that some of the effects caused by stress irreversibly affected cell structures and functions. However, of the species being studied, African mahogany displayed a greater sensitivity to stress, with poorer recovery.


Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 708 ◽  
Author(s):  
Tommaso Frioni ◽  
Arianna Biagioni ◽  
Cecilia Squeri ◽  
Sergio Tombesi ◽  
Matteo Gatti ◽  
...  

M4 is a relatively new rootstock that was selected for increased resilience of vineyards across hot regions where meteorological drought is often coupled to water scarcity. However, M4 has thus far been tested only against water-stress sensitive rootstocks. Against this backdrop, the aim of the present work is to examine the water status and gas exchange performances of vines grafted to M4 in comparison to those of vines grafted to a commercial stock that is drought-tolerant, 1103 Paulsen (1103P), under a progressive water deficit followed by re-watering. This study was undertaken on Grechetto Gentile, a cultivar that is renowned for its rather conservative water use (near-isohydric behavior). While fifty percent of both grafts were fully irrigated (WW), the remaining underwent progressive water stress by means of suspending irrigation (WS). Soil and leaf water status, as well as leaf gas exchanges, along with chlorophyll fluorescence, were followed daily from 1 day pre-stress (DOY 176) until re-watering (DOY 184). Final leaf area per vine, divided in main and lateral contribution, was also assessed. While 1103P grafted vines manifested higher water use under WW conditions, progressive stress evidenced a faster water depletion by 1103P, which also maintained slightly more negative midday leaf water potential (Ψleaf) as compared to M4 grafted plants. Daily gas exchange readings, as well as diurnal assessment performed at the peak of stress (DOY 183), also showed increased leaf assimilation rates (A) and water use efficiency (WUE) in vines grafted on M4, which were also less susceptible to photosynthetic downregulation. Dynamic of stomatal closure targeted at 90% reduction of leaf stomatal conductance showed a similar behavior among rootstocks since the above threshold was reached by both at Ψleaf of about −1.11 MPa. The same fractional reduction in leaf A was reached by vines grafted on M4 at a Ψleaf of −1.28 MPa vs. −1.10 MPa measured in 1103P, meaning that using M4 as a rootstock will postpone full stomatal closure. While mechanisms involved in improved CO2 uptake in M4-grafted vines under moderate-to-severe stress are still unclear, our data support the hypothesis that M4 might outscore the performance of a commercial drought-tolerant genotype (1103P) and can be profitably used as a tool to improve the resilience of vines to summer drought.


1998 ◽  
Vol 34 (3) ◽  
pp. 409-418 ◽  
Author(s):  
M.G. Cayon ◽  
M.A. El-Sharkawy ◽  
L.F. Cadavid

2016 ◽  
Vol 43 (9) ◽  
pp. 827 ◽  
Author(s):  
Vinay Pagay ◽  
Vivian Zufferey ◽  
Alan N. Lakso

Recent climatic trends of higher average temperatures and erratic precipitation patterns are resulting in decreased soil moisture availability and, consequently, periods of water stress. We studied the effects of seasonal water stress on grapevine (Vitis vinifera L. cv. Riesling grafted onto 101–14 (Vitis riparia Michx.×Vitis rupestris Scheele) rootstock) shoot growth, leaf gas exchange, xylem morphology and hydraulic performance in the cool-climate Finger Lakes region of New York. A plastic rain exclusion tarp was installed on the vineyard floor to create a soil moisture deficit and consequently induce vine water stress. Weekly measurements of predawn leaf and midday stem water potentials (Ψmd) were made, and two contrasting shoot length classes, long (length &gt;2.0m) and short (length &lt;1.0m), were monitored. Growth of both long and short shoots was positively correlated with Ψmd but no difference in water status was found between the two. Compared with rain-fed vines, water-stressed vines had lower photosynthesis and stomatal conductance later in the season when Ψmd dropped below –1.2MPa. Long shoots had three-fold higher xylem-specific hydraulic conductivity values than short shoots. Long shoots experiencing water stress were less vulnerable to xylem cavitation than shorter shoots even though they had more large-diameter vessels. The lower vulnerability to cavitation of long shoots may be attributed to less xylem intervessel pitting being found in long shoots, consistent with the air-seeding hypothesis, and suggests that a hydraulic advantage enables them to maintain superior growth and productivity under water stress.


1994 ◽  
Vol 24 (5) ◽  
pp. 954-959 ◽  
Author(s):  
L.J. Samuelson ◽  
J.R. Seiler

The interactive influences of ambient (374 μL•L−1) or elevated (713 μL•L−1) CO2, low or high soil fertility, well-watered or water-stressed treatment, and rooting volume on gas exchange and growth were examined in red spruce (Picearubens Sarg.) grown from seed through two growing seasons. Leaf gas exchange throughout two growing seasons and growth after two growing seasons in response to elevated CO2 were independent of soil fertility and water-stress treatments, and rooting volume. During the first growing season, no reduction in leaf photosynthesis of seedlings grown in elevated CO2 compared with seedlings grown in ambient CO2 was observed when measured at the same CO2 concentration. During the second growing season, net photosynthesis was up to 21% lower for elevated CO2-grown seedlings than for ambient CO2-grown seedlings when measured at 358 μL•L−1. Thus, photosynthetic acclimation to growth in elevated CO2 occurred gradually and was not a function of root-sink strength or soil-fertility treatment. However, net photosynthesis of seedlings grown and measured at an elevated CO2 concentration was still over 2 times greater than the photosynthesis of seedlings grown and measured at an ambient CO2 concentration. Growth enhancement by CO2 was maintained, since seedlings grown in elevated CO2 were 40% larger in both size and weight after two growing seasons.


Author(s):  
Lourenço M. C. Branco ◽  
Claudivan F. de Lacerda ◽  
Albanise B. Marinho ◽  
Carlos H. C. de Sousa ◽  
Amanda S. F. Calvet ◽  
...  

ABSTRACT The objective of this study was to evaluate the influence of irrigation with brackish water on the production of bamboo seedlings (Bambusa vulgaris). The experiment was carried out at the Fazenda Experimental Piroás, in the municipality of Redenção, CE, Brazil (4° 14’ 53” S, 38° 45’ 10” W, and altitude of 230 m), in a completely randomized design with five treatments and six repetitions. The treatments consisted of five irrigation water electrical conductivity (ECw): 0.5 (control); 1.5; 2.5; 3.5 and 4.5 dS m-1. At 120 days after the beginning of the application of the treatments the leaf gas exchange, relative chlorophyll index (RCI), plant height (H), shoot dry matter (SDM), H/SDM ratio, and the concentrations of Na+ and K+ in stems and leaves were evaluated. Salt tolerance indexes were calculated based on SDM, H, photosynthesis rate and RCI. The increase in the ECw reduced leaf gas exchange, and the reduction in the photosynthesis rate was caused by stomatal and non-stomatal effects. The salinity affected negatively the growth and quality of bamboo seedlings, with the greatest effects being with ECw equal to or greater than 2.5 dS m-1. Bamboo seedlings present Na+ retention in the stems and low Na+/K+ ratio in the leaves. Bamboo seedlings are tolerant to salinity up to 1.5 dS m-1, indicating that waters with this salinity can be used for seedling production of this species, without loss of growth and quality.


2018 ◽  
Vol 45 (8) ◽  
pp. 865 ◽  
Author(s):  
Amanda P. De Souza ◽  
Adriana Grandis ◽  
Bruna C. Arenque-Musa ◽  
Marcos S. Buckeridge

Photosynthesis and growth are dependent on environmental conditions and plant developmental stages. However, it is still not clear how the environment and development influence the diurnal dynamics of nonstructural carbohydrates production and how they affect growth. This is particularly the case of C4 plants such as sugarcane (Saccharum spp.). Aiming to understand the dynamics of leaf gas exchange and nonstructural carbohydrates accumulation in different organs during diurnal cycles across the developmental stages, we evaluated these parameters in sugarcane plants in a 12-month field experiment. Our results show that during the first 3 months of development, light and vapour pressure deficit (VPD) were the primary drivers of photosynthesis, stomatal conductance and growth. After 6 months, in addition to light and VPD, drought, carbohydrate accumulation and the mechanisms possibly associated with water status maintenance were also likely to play a role in gas exchange and growth regulation. Carbohydrates vary throughout the day in all organs until Month 9, consistent with their use for growth during the night. At 12 months, sucrose is accumulated in all organs and starch had accumulated in leaves without any diurnal variation. Understanding of how photosynthesis and the dynamics of carbohydrates are controlled might lead to strategies that could increase sugarcane’s biomass production.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1496
Author(s):  
Viera Paganová ◽  
Marek Hus ◽  
Zuzana Jureková

In this study, seedlings of Pyrus pyraster and Sorbus torminalis were grown for 60 days in the regulated environment of a growth chamber under different water regimes. The measured indicators were the growth and distribution of mass to organs, total biomass, root to shoot mass ratio (R:S), and gas exchange parameters (gs, E, An, and water use efficiency (WUE)). The amount of total biomass was negatively affected by drought. Differences between species were confirmed only for the dry matter of the leaves. P. pyraster maintained the ratio of the mass distribution between belowground and aboveground organs in both variants of the water regime. S. torminalis created more root length for a given dry-mass under drought treatment, but its R:S was lower compared to P. pyraster. The water potential of the leaves (Ψwl) was affected by substrate saturation and interspecific differences. P. pyraster had a demonstrably higher water potential and maintained this difference even after prolonged exposure to drought. After 30 days of different water regimes, Pyrus maintained higher values of gs, An, and E in control and drought treatments, but over a longer period of drought (after 50 days), the differences between species were equalized. The changes of the leaf gas exchange for Pyrus were accompanied by a significant increase in WUE, which was most pronounced on the 40th day of the experiment. A significant and strong relationship between WUE and gs was demonstrated. The results confirmed the different physiological performances of seedlings of tree species and the different mechanisms of their response to water scarcity during drought treatment. P. pyraster presented more acclimation traits, which allowed this taxon to exhibit better performance over a longer period of water scarcity.


Sign in / Sign up

Export Citation Format

Share Document