Detection of Intra-Clonal Genetic Variability in Vegetatively Propagated Tea Using RAPD Markers

2004 ◽  
Vol 48 (1) ◽  
pp. 113-115 ◽  
Author(s):  
M. Singh ◽  
J. Saroop ◽  
B. Dhiman
2009 ◽  
Vol 69 (2) ◽  
pp. 375-380 ◽  
Author(s):  
MF. Manica-Cattani ◽  
J. Zacaria ◽  
G. Pauletti ◽  
L. Atti-Serafini ◽  
S. Echeverrigaray

Twenty-seven accessions of Lippia alba Mill. collected in Rio Grande do Sul state, Brazil, were analysed by ISSR and RAPD markers to evaluate their genetic variability and relationships. Six ISSR primers and four RAPD primers generated 120 amplified fragments, most of which were polymorphics. The overall genetic variability among accessions was very high when compared with other plant species. The hierarchical analysis of molecular data (UPGMA) showed low relationship between accessions, and no grouping between accessions of the same chemotype. Canonical functions allowed identifying some variables related with the chemical characteristics of the essential oils. Both ISSR and RAPD markers were efficient to address the genetic diversity of L. alba, and may contribute to the conservation and breeding of this increasingly important aromatic and medicinal species.


Genome ◽  
1995 ◽  
Vol 38 (2) ◽  
pp. 201-210 ◽  
Author(s):  
F. N. Wachira ◽  
R. Waugh ◽  
W. Powell ◽  
C. A. Hackett

Camellia sinensis is a beverage tree crop native to Southeast Asia and introductions have been made into several nonindigenous countries. No systematic assessment of genetic variability in tea has been done anywhere. In this study, random amplified polymorphic DNA (RAPD) analysis was used to estimate genetic diversity and taxonomic relationships in 38 clones belonging to the three tea varieties, assamica, sinensis, and assamica ssp. lasiocalyx. Extensive genetic variability was detected between species, which was partitioned into between and within population components. Seventy percent of the variation was detected within populations. Analyses based on band sharing separated the three populations in a manner consistent with both the present taxonomy of tea and with the known pedigrees of some clones. RAPD analysis also discriminated all of the 38 commercial clones, even those which cannot be distinguished on the basis of morphological and phenotypic traits.Key words: genetic diversity, RAPDs, Camellia sinensis.


Biologia ◽  
2011 ◽  
Vol 66 (1) ◽  
Author(s):  
Tariq Mahmood ◽  
Anna Iqbal ◽  
Nazia Nazar ◽  
Ishrat Naveed ◽  
Bilal Abbasi ◽  
...  

AbstractFamily Apocynaceae is an economically important family grown as ornamental plants and many wild species have medicinal uses as well. The aim of the present study was to understand the level and pattern of genetic variability among the selected individuals of Apocynaceae. For this purpose, three species of different genera of Apocynaceae, Thevetia peruviana, Alstonia scholaris and Catharanthus roseus, were collected from Rawalpindi and Quaid-i-Azam University forest, Islamabad. To evaluate the level of polymorphism within the species and members of different species, randomly amplified polymorphic DNA (RAPD) markers were used. A series of OPC RAPD primers were used; only six primers of OPC series gave amplification. Highest genetic variation at interspecific and intraspecific levels was shown by OPC 9 and the lowest polymorphism was observed in OPC 4. The data was analyzed by using software Statistica 5.5. In total 105 monomorphic and 272 polymorphic bands were produced from all primers. Therefore, out of 322 amplified products, 26% were monomorphic and 68% were polymorphic. Low genetic diversification was observed both at intraspecific and interspecific level. At the molecular level Alstonia scholaris and Catharanthus roseus (subfamily Plumerioideae) appeared in a group and Thevetia peruviana (subfamily Rauvolfoideae) formed another group, confirming the classification based on morphological characters.


2013 ◽  
Vol 43 (6) ◽  
pp. 978-984 ◽  
Author(s):  
Vanice Dias Oliveira ◽  
Allivia Rouse Carregosa Rabbani ◽  
Ana Veruska Cruz da Silva ◽  
Ana da Silva Lédo

This research had as objective to characterize genetically individuals of physic nut cultivated in experimental areas in Sergipe, Brazil by means of RAPD molecular markers. Leaves of 40 individuals were collected and DNA was isolated using CTAB 2% method. Were used 30 primers RAPD for DNA amplification, and this data was used to estimate the genetic similarity among the pairs of individuals, using Jaccard coefficient, and group them out for the UPGMA method. Also, the genetic structure and diversity of the populations were assessed using AMOVA. Of the 100 fragments generated, 29 of were polymorphic. A similarity average of 0.54 among the individuals was found and the amplitude similarities varied from 0.18 to 1.00. One of them (U5) was unit clusters and formed by the most divergent individuals. AMOVA indicated that there is more variation within (63%) the population. In conclusion, it was possible verify genetic variability in physic nut using RAPD markers at these experimental areas.


Sign in / Sign up

Export Citation Format

Share Document