Effect of growth rate and lamellar spacing on microhardness in the directionally solidified Pb-Cd, Sn-Zn and Bi-Cd eutectic alloys

2004 ◽  
Vol 39 (21) ◽  
pp. 6571-6576 ◽  
Author(s):  
H. Kaya ◽  
M. Gündüz ◽  
E. Çadirli ◽  
O. Uzun
JOM ◽  
2015 ◽  
Vol 67 (8) ◽  
pp. 1886-1895
Author(s):  
JianFei Zhang ◽  
Jun Shen ◽  
HuiPing Ren ◽  
JiChun Yang ◽  
Lin Chen ◽  
...  

Author(s):  
Y. L. Li ◽  
C. L. Ma ◽  
H. Zhang

The progresses in high temperature materials encourage the development of turbine engine in terms of thrust and efficiency. Ni-based superalloys, which are predominant in elevated temperature application, have limited potential to raise serving temperature. In-situ composites, such as Cr-Cr3Si, NiAl-Cr and Nb-Nb5Si3 eutectic alloys, consisting of a ductile metallic phase and a hard intermetallic phase, are attractive candidates to replace Ni-based superalloys. The microstructure and mechanical properties of these in-situ composites are widely investigated. However, little work is focused on crystallography of in-situ composites, except for preferred growth direction and crystallographic orientation relationship. In this paper, Nb-Si-Mo-based alloys were fabricated by non-consumable arc melting, and then were directionally solidified in an optical floating zone (OFZ) melting furnace. The crystallographic orientation evolutions in Nb-Nb5Si3 eutectic alloy are studied by electron back-scattered diffraction (EBSD) analyses. First, the effect of solidification condition on crystallographic orientation is examined. The as-cast alloy displays cellular microstructure. The Nb phase shows different crystallographic orientations in different cells, while the Nb5Si3 phase shows similar crystallographic orientation in a number of cells. In directionally solidified alloys, when growth rate is 5mm/h without seed rod rotation, the grain sizes of Nb and Nb5Si3 are both several millimeter. As growth rate rises or seed rod rotates, the grain size of Nb decreases much more drastically than that of Nb5Si3. Thus, solidification condition is supposed to influence nucleation of the Nb phase rather than the Nb5Si3 phase. Second, the effect of annealing on crystallographic orientation is studied. The Nb5Si3 has three allotropic phases. The allotropic phase transformations occur through annealing, during which the Nb5Si3 grain size decreases.


2022 ◽  
Vol 327 ◽  
pp. 82-97
Author(s):  
He Qin ◽  
Guang Yu Yang ◽  
Shi Feng Luo ◽  
Tong Bai ◽  
Wan Qi Jie

Microstructures and mechanical properties of directionally solidified Mg-xGd (5.21, 7.96 and 9.58 wt.%) alloys were investigated at a wide range of growth rates (V = 10-200 μm/s) under the constant temperature gradient (G = 30 K/mm). The results showed that when the growth rate was 10 μm/s, different interface morphologies were observed in three tested alloys: cellular morphology for Mg-5.21Gd alloy, a mixed morphology of cellular structure and dendritic structure for Mg-7.96Gd alloy and dendrite morphology for Mg-9.58Gd alloy, respectively. Upon further increasing the growth rate, only dendrite morphology was exhibited in all experimental alloys. The microstructural parameters (λ1, λ2) decreased with increasing the growth rate for all the experimental alloy, and the measured λ1 and λ2 values were in good agreement with Trivedi model and Kattamis-Flemings model, respectively. Vickers hardness and the ultimate tensile strength increased with the increase of the growth rate and Gd content, while the elongation decreased gradually. Furthermore, the relationships between the hardness, ultimate tensile strength, the growth rate and the microstructural parameters were discussed and compared with the previous experimental results.


2012 ◽  
Vol 730-732 ◽  
pp. 829-834
Author(s):  
Adrina P. Silva ◽  
Pedro R. Goulart ◽  
José Eduardo Spinelli ◽  
Amauri Garcia

In the present study a hypomonotectic Al-0.9wt%Pb alloy was directionally solidified under transient heat flow conditions and the microstructure evolution was analyzed. The solidification thermal parameters such as the growth rate, the cooling rate and the temperature gradient were experimentally determined by cooling curves recorded by thermocouples positioned along the casting length. The monotectic structure was characterized by metallography and a microstructural transition was observed. From the casting cooled surface up to a certain position in the casting the microstructure was characterized by well-distributed Pb-rich droplets in the aluminum-rich matrix, followed by a mixture of fibers and strings of pearls from this point to the top of the casting. The interphase spacing (λ) and the diameter of Pb-rich particles were also measured along the casting length and experimental growth laws relating these microstructural features to the experimental thermal parameters are proposed.


2014 ◽  
Vol 1004-1005 ◽  
pp. 24-27
Author(s):  
Wen Jia Wang ◽  
Zhi Long Zhao ◽  
Ming Tang ◽  
Jian Jun Gao

An eutectic NiAl–1.5 at.% W alloy prepared by using directionally solidified (DS)was employed as a source for producing W-nanowires. Several growth rate of 8,15,25/s was respectively used at a temperature gradient of ~240 K/cm in a Bridgman-type directional solidification furnace. A combined stability diagram was applied to predict proper conditions for the selective dissolution of NiAl matrix to get W-wires. Etching in a mixture of HCl:H2O2released parallel aligned W-nanowires with a wire diameter of ~500 nm. Different morphologies, such as nanobelts, lotus-shaped, conical of W-nanowires are obtained at the different conditions.


Sign in / Sign up

Export Citation Format

Share Document