Juglone Disrupts Root Plasma Membrane H+-ATPase Activity and Impairs Water Uptake, Root Respiration, and Growth in Soybean (Glycine max) and Corn (Zea mays)

2004 ◽  
Vol 30 (2) ◽  
pp. 453-471 ◽  
Author(s):  
Angela M. Hejl ◽  
Karen L. Koster
1992 ◽  
Vol 2 (2) ◽  
pp. 105-111 ◽  
Author(s):  
S. Sánchez-Nieto ◽  
R. Rodríguez-Sotres ◽  
P. González-Romo ◽  
I. Bernal-Lugo ◽  
M. Gavilanes-Ruíz

AbstractThe effectiveness of ATPase in germinated seed may play an important role in the vigour of germination. The activities of tonoplast and plasma membrane ATPases in two maize (Zea mays L.) lines with different vigour of germination were determined. ATP hydrolysis was measured in microsomal fractions from coleoptiles along with the responses to specific inhibitors for the plasma membrane, tonoplast and mitochondrial ATPases as well as for acid phosphatase. Nitrate-sensitive ATPase activity was 1.5–3.0 times lower in the low-vigour line than in the high-vigour line. Kinetic analysis of ATP hydrolysis at different substrate concentrations revealed the existence of two enzymes in the microsomal fractions of the two lines. The Vmax of enzyme 1 in the low-vigour line was a third of that in the high-vigour line. This enzyme was identified as the nitrate-sensitive or tonoplast ATPase on the basis of measurements of ATP hydrolysis in the presence of specific inhibitors at high (8.12mm) and low (0.77mm) ATP concentrations.


2018 ◽  
Vol 19 (12) ◽  
pp. 3921 ◽  
Author(s):  
Francisco Albornoz ◽  
Marlene Gebauer ◽  
Carlos Ponce ◽  
Ricardo Cabeza

Grafting has become a common practice among tomato growers to obtain vigorous plants. These plants present a substantial increase in nitrogen (N) uptake from the root zone. However, the mechanisms involved in this higher uptake capacity have not been investigated. To elucidate whether the increase in N uptake in grafted tomato plants under high N demand conditions is related to the functioning of low- (high capacity) or high-affinity (low capacity) root plasma membrane transporters, a series of experiments were conducted. Plants grafted onto a vigorous rootstock, as well as ungrafted and homograft plants, were exposed to two radiation levels (400 and 800 µmol m−2 s−1). We assessed root plasma membrane nitrate transporters (LeNRT1.1, LeNRT1.2, LeNRT2.1, LeNRT2.2 and LeNRT2.3) expression, Michaelis‒Menten kinetics parameters (Vmax and Km), root and leaf nitrate reductase activity, and root respiration rates. The majority of nitrate uptake is mediated by LeNRT1.1 and LeNRT1.2 in grafted and ungrafted plants. Under high N demand conditions, vigorous rootstocks show similar levels of expression for LeNRT1.1 and LeNRT1.2, whereas ungrafted plants present a higher expression of LeNRT1.2. No differences in the uptake capacity (evaluated as Vmax), root respiration rates, or root nitrate assimilation capacity were found among treatments.


2009 ◽  
Vol 59 (2) ◽  
pp. 125-135 ◽  
Author(s):  
Juan Carlos Alvarez-Pizarro ◽  
Enéas Gomes-Filho ◽  
Claudivan Feitosa de Lacerda ◽  
Nara Lídia Mendes Alencar ◽  
José Tarquínio Prisco

Planta ◽  
1999 ◽  
Vol 209 (2) ◽  
pp. 187-194 ◽  
Author(s):  
Patrizia De Nisi ◽  
Marta Dell'Orto ◽  
Livia Pirovano ◽  
Graziano Zocchi

Sign in / Sign up

Export Citation Format

Share Document