Three-Dimensional Stress Analysis for a Thick Plate of a Composite Material with a Spatially Locally Curved Structure

2003 ◽  
Vol 39 (5) ◽  
pp. 447-454 ◽  
Author(s):  
E. T. Tarim ◽  
S. D. Akbarov
1982 ◽  
Vol 25 (203) ◽  
pp. 720-727
Author(s):  
Michiaki KOBAYASHI ◽  
Toru NAGASAWA ◽  
Hiromasa ISHIKAWA ◽  
Kin-ichi HATA

1973 ◽  
Vol 1 (2) ◽  
pp. 210-250 ◽  
Author(s):  
J. D. Walter ◽  
G. N. Avgeropoulos ◽  
M. L. Janssen ◽  
G. R. Potts

Abstract Fundamentals of composite material technology are applied to the investigation of multi-ply cord-reinforced rubber systems as used in pneumatic tires. The stiffness parameters of such multi-ply systems are determined through the use of the elastic properties of the constituent cord and rubber components. The effects of coupling between the bending and stretching modes of deformation are discussed along with the limitations of present composite material technology as applied to soft rubbery systems. The predicted stiffness parameters are related to tread wear, obstacle envelopment, vibration, and stress analysis of tires.


Geosciences ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 296
Author(s):  
Richard H. Groshong

This paper is a personal account of the origin and development of the twinned-calcite strain gauge, its experimental verification, and its relationship to stress analysis. The method allows the calculation of the three-dimensional deviatoric strain tensor based on five or more twin sets. A minimum of about 25 twin sets should provide a reasonably accurate result for the magnitude and orientation of the strain tensor. The opposite-signed strain axis orientation is the most accurately located. Where one strain axis is appreciably different from the other two, that axis is generally within about 10° of the correct value. Experiments confirm a magnitude accuracy of 1% strain over the range of 1–12% axial shortening and that samples with more than 40% negative expected values imply multiple or rotational deformations. If two deformations are at a high angle to one another, the strain calculated from the positive and negative expected values separately provides a good estimate of both deformations. Most stress analysis techniques do not provide useful magnitudes, although most provide a good estimate of the principal strain axis directions. Stress analysis based on the number of twin sets per grain provides a better than order-of-magnitude approximation to the differential stress magnitude in a constant strain rate experiment.


Sign in / Sign up

Export Citation Format

Share Document