Effect of the Stress State on the Critical Load and Load-Carrying Capacity of Shells with Axisymmetrical Dents

2004 ◽  
Vol 36 (2) ◽  
pp. 171-177
Author(s):  
G. D. Gavrilenko ◽  
V. I. Matsner
2018 ◽  
Vol 10 (09) ◽  
pp. 1850100
Author(s):  
Sadegh Imani Yengejeh ◽  
Andreas Öchsner ◽  
Seyedeh Alieh Kazemi ◽  
Maksym Rybachuk

We report on the structural stability of ideal (defect-free) and structurally and morphologically degenerate carbon nanotubes and nanotube junction systems under axial loading based on the finite element method. We estimated the values for critical buckling load for uncapped and capped single-walled carbon nanotubes (SWCNTs) and linear and angle-adjoined SWCNT heterojunctions in ideal and structurally degenerate systems containing single-, double-, triple-, pinhole- and pentagon–heptagon (i.e., 5–7) structural defects and also containing a substitutional nitrogen (N) atom inclusion under compressive loading. Absolute atomic vacancy (defect) concentration in studied SWCNTs models was assumed to be nil for ideal systems, and was up to 3.0 at.% for structurally and morphologically degenerate systems. It was found that all types of structural defects and the morphological N-defect had reduced the load carrying capacity and mechanical strength in all SWCNT systems studied. The SWCNT models containing physically large vacant sites, such as triple- and pinhole-defects, displayed significantly lower critical load values compared to the systems that contained only a single-, double- or triple-vacancies. In addition, we found that capped SWCNTs performed marginally better in critical load carrying capacity compared to uncapped SWCNT systems. Furthermore, majority of the investigated structures displayed reduced load in SWCNTs with narrower tube widths, proportional to the size and the type of the defect investigated. The effects of chirality, such as zigzag- versus armchair-type, on the structural stability of the investigated SWCNT models were also investigated.


2013 ◽  
Vol 753-755 ◽  
pp. 520-524
Author(s):  
Xin Zhao

Taking a flyover as the background, this paper compares two reinforcement scheme, and ultimately chooses the paste carbon fiber polymer method to reinforce the bridge. It calculates and analyzes the structure before and after the reinforcement, then compares the stress state , shear load-carrying capacity and flexural capacity. At last ,it evaluates the effect of the paste carbon fiber polymer method and puts forward some suggestions.


2003 ◽  
Vol 03 (01) ◽  
pp. 55-70 ◽  
Author(s):  
ALESSANDRO BARATTA ◽  
OTTAVIA CORBI

Magneto-rheological liquids are controllable liquids that under the action of a magnetic field can reversibly pass from the linear viscous liquid state with free-flow to the semi-solid one with a controlled stress-state. They are composed of typically non-colloidal magnetic micronized particles and possess a load carrying capacity higher than other, more controllable, fluids, such as electro-rheological liquids; moreover they are less sensitive to impurities and contaminations that may possibly occur in manufacturing. in the paper, the most suitable models for simulation of such devices are investigated with emphasis on evaluation of their efficiency as structural control systems.


Author(s):  
Bernd-Robert Ho¨hn ◽  
Karsten Stahl ◽  
Peter Oster ◽  
Thomas Tobie ◽  
Simon Schwienbacher ◽  
...  

A high geometric accuracy of case-hardened gears requires a grinding process after heat treatment. Inappropriate grinding conditions can induce surface tempering, alter hardness and lead to an unfavorable residual stress state. This effect is commonly known as grinding burn. The influence of grinding burn on the flank-load-carrying capacity was systematically investigated within a research project. The results of experimental tests and the analysis of surface and near subsurface parameters allowed a correlation between grinding burn grade, material characteristics and flank-load-carrying capacity. A main result of this project is a proposal for the calculation of surface durability of gears which implicates the influence of grinding burn. This paper summarizes results of the experimental testing and the accompanying analyses. The main focus herein is the consideration of an altered hardness and residual stress state in a material-physically based model for calculating the load capacity of gears.


2005 ◽  
Vol 11 (2) ◽  
pp. 99-107 ◽  
Author(s):  
Zdenek Kala ◽  
Jirí Kala ◽  
Miroslav Škaloud ◽  
Bretislav Teplý

The study is divided into two parts: (i) in the first one, the plate girder (Fig 1) is considered to be exposed to quasi‐constant loading (ie to loads which are either constant or repeated in a very small number of cycles), while (ii) in the other one, the girder is assumed to be subjected to repeated loading. Then it is understandable that the objective of the first part should be to look into the influence of initial imperfections on the static ultimate load of the girder related to the formation of a plastic failure mechanism in it, while that of the second part was to study the effect of imperfections on the stress state under considerably lesser loads, viz under such as to correspond to the development of fatigue cracks in the girder and, consequently, to its fatigue limit state. In this case the state of stress was measured by bending stresses developing in the crack‐prone areas (Fig 4) of the web “breathing” under the repeated loads, which ‐as demonstrated by the Prague experiments ‐ occur at the toes of the fillet welds connecting the “breathing” web with the girder flanges and stiffeners. In both parts, the results of the theoretical investigation were compared with the conclusions of numerous tests carried out at the Institute of Theoretical and Applied Mechanics in Prague. The correlation was found to be very good; for example, the experimental load‐carrying capacity of the girders tested in Prague was close to the mean value of the corresponding theoretical solutions performed for the same girders. Thereby the analytical model applied in the theoretical investigation can be regarded as verified. The theoretical analysis was based on a non‐linear variant of the finite element method, the girder being modelled by means of shell elements and the ANSYS program being applied. All input imperfections were considered to be random quantities. The statistical distributions were introduced according to both experimentally obtained results and data given in literature. Random realisations of input random quantities were simulated by the LHS (Latin Hypercube Sampling) method. By way of sensitivity analysis it was studied to what extend the variability of initial imperfections was reflected in the variability of stresses in the crack‐prone areas of the girder. The main conclusion can be formulated as follows: While the effect of (and sensitivity to) the initial out‐of‐flatness of the girder web, in the case studied of a plate girder whose web is subjected to predominant shear, on the static load‐carrying capacity is (see the results of the first part of the study) very small (only a few p.c), the same effect on the stress state occurring in the crack‐prone areas of the “breathing” web under service loads can be (see the other part of the study) very important. This is also one of the main explanations of the large scatter of the results of the fatigue tests conducted in Prague.


2005 ◽  
Vol 10 (2) ◽  
pp. 151-160 ◽  
Author(s):  
J. Kala ◽  
Z. Kala

Authors of article analysed influence of variability of yield strength over cross-section of hot rolled steel member to its load-carrying capacity. In calculation models, the yield strength is usually taken as constant. But yield strength of a steel hot-rolled beam is generally a random quantity. Not only the whole beam but also its parts have slightly different material characteristics. According to the results of more accurate measurements, the statistical characteristics of the material taken from various cross-section points (e.g. from a web and a flange) are, however, more or less different. This variation is described by one dimensional random field. The load-carrying capacity of the beam IPE300 under bending moment at its ends with the lateral buckling influence included is analysed, nondimensional slenderness according to EC3 is λ¯ = 0.6. For this relatively low slender beam the influence of the yield strength on the load-carrying capacity is large. Also the influence of all the other imperfections as accurately as possible, the load-carrying capacity was determined by geometrically and materially nonlinear solution of very accurate FEM model by the ANSYS programme.


2005 ◽  
Vol 10 (1) ◽  
pp. 65-75 ◽  
Author(s):  
Z. Kala

The load-carrying capacity of the member with imperfections under axial compression is analysed in the present paper. The study is divided into two parts: (i) in the first one, the input parameters are considered to be random numbers (with distribution of probability functions obtained from experimental results and/or tolerance standard), while (ii) in the other one, the input parameters are considered to be fuzzy numbers (with membership functions). The load-carrying capacity was calculated by geometrical nonlinear solution of a beam by means of the finite element method. In the case (ii), the membership function was determined by applying the fuzzy sets, whereas in the case (i), the distribution probability function of load-carrying capacity was determined. For (i) stochastic solution, the numerical simulation Monte Carlo method was applied, whereas for (ii) fuzzy solution, the method of the so-called α cuts was applied. The design load-carrying capacity was determined according to the EC3 and EN1990 standards. The results of the fuzzy, stochastic and deterministic analyses are compared in the concluding part of the paper.


2005 ◽  
Vol 33 (4) ◽  
pp. 210-226 ◽  
Author(s):  
I. L. Al-Qadi ◽  
M. A. Elseifi ◽  
P. J. Yoo ◽  
I. Janajreh

Abstract The objective of this study was to quantify pavement damage due to a conventional (385/65R22.5) and a new generation of wide-base (445/50R22.5) tires using three-dimensional (3D) finite element (FE) analysis. The investigated new generation of wide-base tires has wider treads and greater load-carrying capacity than the conventional wide-base tire. In addition, the contact patch is less sensitive to loading and is especially designed to operate at 690kPa inflation pressure at 121km/hr speed for full load of 151kN tandem axle. The developed FE models simulated the tread sizes and applicable contact pressure for each tread and utilized laboratory-measured pavement material properties. In addition, the models were calibrated and properly validated using field-measured stresses and strains. Comparison was established between the two wide-base tire types and the dual-tire assembly. Results indicated that the 445/50R22.5 wide-base tire would cause more fatigue damage, approximately the same rutting damage and less surface-initiated top-down cracking than the conventional dual-tire assembly. On the other hand, the conventional 385/65R22.5 wide-base tire, which was introduced more than two decades ago, caused the most damage.


2020 ◽  
Vol 2020 (21) ◽  
pp. 146-153
Author(s):  
Anatolii Dekhtyar ◽  
◽  
Oleksandr Babkov ◽  

Sign in / Sign up

Export Citation Format

Share Document