From Obesity to Diabetes

2006 ◽  
Vol 76 (4) ◽  
pp. 172-177 ◽  
Author(s):  
Keller

The prevalence of obesity has been increasing dramatically in the last decades in the whole world, not only in industrialized countries but also in developing areas. A major complication of obesity is insulin resistance and type 2 diabetes. Diabetes is also rapidly increasing world-wide – reaching a prevalence in adults of approx. 5–6% in Central Europe and in the US, and more than 50% in specific, genetically prone populations. This article reviews pathogenetic mechanisms linking obesity and type 2 diabetes. Emphasis is placed on the observation that excessive amounts of adipocytes are associated with an impairment of insulin sensitivity, a key feature of the "metabolic syndrome". This is a cluster of metabolic abnormalities such as type 2 diabetes, hypertension and dyslipidemia; all of them are enhanced by the presence of visceral (abdominal) obesity and all contribute to the increased cardiovascular risk observed in these patients. Besides release of free fatty acids, adipocytes secrete substances that contribute to peripheral insulin resistance, including adiponectin, resistin, TNF-α and interleukin 6. Increased turnover of free fatty acids interferes with intracellular metabolism of glucose in the muscle, and they exert lipotoxic effect on pancreatic β-cells. The pre-receptor metabolism of cortisol is enhanced in visceral adipose tissue by activation of 11 β-hydroxysteroid dehydrogenase type 1. A new class of anti-diabetic drugs (thiazolidinediones, or glitazones) bind to peroxisome proliferator activated receptor (PPAR-γ) and lower thereby plasma free fatty acids and cytokine production in adipocytes, in addition to a decrease of resistin and an increase in adiponectin observed in animals, resulting in an overall increase in insulin sensitivity and in an improvement of glucose homeostasis. However, the first step to avoid insulin resistance and prevent the development of diabetes should be a reduction in body weight in overweight subjecs, and an increase in physical activity. There are now three published randomized controlled trials demonstrating that in high risk individuals, life style changes with modest weight lost, associated with diminished fat intake and an increase in fruit and vegetable consumption result in marked inhibition of the transition from the prediabetic state to manifest type 2 diabetes.

2021 ◽  
Author(s):  
Eleni Rebelos ◽  
Marco Bucci ◽  
Tomi Karjalainen ◽  
Vesa Oikonen ◽  
Alessandra Bertoldo ◽  
...  

<b>Objective</b> Whereas insulin resistance is expressed as reduced glucose uptake in peripheral tissues, the relationship between insulin resistance and brain glucose metabolism remains controversial. Our aim was to examine the association of insulin resistance and brain glucose uptake (BGU) during a euglycemic hyperinsulinemic clamp in a large sample of subjects across a wide range of age and insulin sensitivity. <p><b>Research Design and Methods</b> [<sup>18</sup>F]-fluorodeoxyglucose positron emission tomography (PET) data from 194 subjects scanned under clamp conditions were compiled from a single-center cohort. BGU was quantified by the fractional uptake rate. We examined the association of age, sex, M value from the clamp, steady-state insulin and free fatty acids levels, C-reactive protein, HbA<sub>1c,</sub> and presence of type 2 diabetes with BGU using Bayesian hierarchical modeling. </p> <p><b>Results</b> Insulin sensitivity, indexed by the M value, was associated negatively with BGU in all brain regions, confirming that in insulin resistant subjects BGU is enhanced during euglycemic hyperinsulinemia. In addition, the presence of type 2 diabetes was associated with a further increase in BGU. On the contrary, age was negatively related to BGU. Steady-state insulin levels, C-reactive protein, free fatty acids, sex, and HbA<sub>1c</sub> were not associated with BGU.</p> <p><b>Conclusions </b>In this large cohort of subjects of either sex across a wide range of age and insulin sensitivity,<b> </b>insulin sensitivity is the best predictor of brain glucose uptake. <b></b></p>


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 706 ◽  
Author(s):  
Justin Hou Ming Yung ◽  
Adria Giacca

Obesity has been described as a global epidemic and is a low-grade chronic inflammatory disease that arises as a consequence of energy imbalance. Obesity increases the risk of type 2 diabetes (T2D), by mechanisms that are not entirely clarified. Elevated circulating pro-inflammatory cytokines and free fatty acids (FFA) during obesity cause insulin resistance and ß-cell dysfunction, the two main features of T2D, which are both aggravated with the progressive development of hyperglycemia. The inflammatory kinase c-jun N-terminal kinase (JNK) responds to various cellular stress signals activated by cytokines, free fatty acids and hyperglycemia, and is a key mediator in the transition between obesity and T2D. Specifically, JNK mediates both insulin resistance and ß-cell dysfunction, and is therefore a potential target for T2D therapy.


2017 ◽  
Vol 31 (1) ◽  
pp. 141-148 ◽  
Author(s):  
Melanie Cree-Green ◽  
Abhinav Gupta ◽  
Gregory V. Coe ◽  
Amy D. Baumgartner ◽  
Laura Pyle ◽  
...  

2005 ◽  
Vol 18 (2) ◽  
pp. 222-240 ◽  
Author(s):  
Neville H. McClenaghan

Insulin resistance underlies type 2 diabetes, CVD and the metabolic syndrome, driven by changes in diet, lifestyle, energy over–consumption and obesity. Nutritional recommendations for insulin resistance remain an area of controversy, particularly the quantity and types of dietary carbohydrate. The present review gives an overview of insulin resistance, its relationship to impaired insulin secretion and the metabolic syndrome, research methodologies used to measure insulin action and the epidemiological and intervention studies on the relationship between dietary carbohydrate and insulin resistance. Epidemiological studies provide little evidence to suggest that total dietary carbohydrate predicts risk of type 2 diabetes, and high–carbohydrate, high–fibre diets with low–glycaemic index (GI) may even contribute to diabetes prevention. Despite inherent limitations associated with techniques used to measure insulin resistance and dietary assessment, most intervention studies reveal an increase in glucose tolerance or insulin sensitivity with high–carbohydrate, low–fat diets in non–diabetic and diabetic individuals. When energy is restricted the source or reduced content of carbohydrate does not appear to be as important as fat for body weight. Thus, low energy intake is key to weight loss and augmentation of insulin sensitivity. Given this, widespread adoption of popular low–carbohydrate high–fat diets highlights the necessity to evaluate dietary interventions regarding safety and metabolic effects. While current evidence supports FAO/WHO recommendations to maintain a high–carbohydrate diet with low–GI foods, the relationships between carbohydrate and insulin sensitivity remains an important research area. Emerging technologies should further enhance understanding of gene–diet interactions in insulin resistance, providing useful information for future nutrition policy decisions.


2007 ◽  
Vol 32 (3) ◽  
pp. 541-548 ◽  
Author(s):  
Torben Østergård ◽  
Niels Jessen ◽  
Ole Schmitz ◽  
Lawrence J. Mandarino

Insulin resistance is a hallmark characteristic of type 2 diabetes. However, in healthy first-degree relatives of type 2 diabetics, insulin resistance is often present years before glucose intolerance or diabetes becomes clinically manifest. The mechanisms of insulin resistance involve conditions leading to an increased supply of fatty acids (e.g., high energy intake, obesity) and conditions in which the degradation/oxidation of muscular fatty acids is impaired. Several large-scale studies have documented the fact that increased physical activity can reduce or at least postpone the development of type 2 diabetes, and low physical fitness is a clear independent risk factor for the development of type 2 diabetes. The mechanisms responsible for the improvement in insulin sensitivity after exercise training have been studied extensively, but are not fully understood. This review focuses on insulin resistance in skeletal muscle and, in particular, its relation to changes in aerobic fitness in type 2 diabetics and their first-degree relatives.


2021 ◽  
Author(s):  
Eleni Rebelos ◽  
Marco Bucci ◽  
Tomi Karjalainen ◽  
Vesa Oikonen ◽  
Alessandra Bertoldo ◽  
...  

<b>Objective</b> Whereas insulin resistance is expressed as reduced glucose uptake in peripheral tissues, the relationship between insulin resistance and brain glucose metabolism remains controversial. Our aim was to examine the association of insulin resistance and brain glucose uptake (BGU) during a euglycemic hyperinsulinemic clamp in a large sample of subjects across a wide range of age and insulin sensitivity. <p><b>Research Design and Methods</b> [<sup>18</sup>F]-fluorodeoxyglucose positron emission tomography (PET) data from 194 subjects scanned under clamp conditions were compiled from a single-center cohort. BGU was quantified by the fractional uptake rate. We examined the association of age, sex, M value from the clamp, steady-state insulin and free fatty acids levels, C-reactive protein, HbA<sub>1c,</sub> and presence of type 2 diabetes with BGU using Bayesian hierarchical modeling. </p> <p><b>Results</b> Insulin sensitivity, indexed by the M value, was associated negatively with BGU in all brain regions, confirming that in insulin resistant subjects BGU is enhanced during euglycemic hyperinsulinemia. In addition, the presence of type 2 diabetes was associated with a further increase in BGU. On the contrary, age was negatively related to BGU. Steady-state insulin levels, C-reactive protein, free fatty acids, sex, and HbA<sub>1c</sub> were not associated with BGU.</p> <p><b>Conclusions </b>In this large cohort of subjects of either sex across a wide range of age and insulin sensitivity,<b> </b>insulin sensitivity is the best predictor of brain glucose uptake. <b></b></p>


Sign in / Sign up

Export Citation Format

Share Document