Obesity, insulin resistance, Type 2 diabetes and free fatty acids

2006 ◽  
Vol 1 (4) ◽  
pp. 499-505 ◽  
Author(s):  
Guenther Boden
2006 ◽  
Vol 76 (4) ◽  
pp. 172-177 ◽  
Author(s):  
Keller

The prevalence of obesity has been increasing dramatically in the last decades in the whole world, not only in industrialized countries but also in developing areas. A major complication of obesity is insulin resistance and type 2 diabetes. Diabetes is also rapidly increasing world-wide – reaching a prevalence in adults of approx. 5–6% in Central Europe and in the US, and more than 50% in specific, genetically prone populations. This article reviews pathogenetic mechanisms linking obesity and type 2 diabetes. Emphasis is placed on the observation that excessive amounts of adipocytes are associated with an impairment of insulin sensitivity, a key feature of the "metabolic syndrome". This is a cluster of metabolic abnormalities such as type 2 diabetes, hypertension and dyslipidemia; all of them are enhanced by the presence of visceral (abdominal) obesity and all contribute to the increased cardiovascular risk observed in these patients. Besides release of free fatty acids, adipocytes secrete substances that contribute to peripheral insulin resistance, including adiponectin, resistin, TNF-α and interleukin 6. Increased turnover of free fatty acids interferes with intracellular metabolism of glucose in the muscle, and they exert lipotoxic effect on pancreatic β-cells. The pre-receptor metabolism of cortisol is enhanced in visceral adipose tissue by activation of 11 β-hydroxysteroid dehydrogenase type 1. A new class of anti-diabetic drugs (thiazolidinediones, or glitazones) bind to peroxisome proliferator activated receptor (PPAR-γ) and lower thereby plasma free fatty acids and cytokine production in adipocytes, in addition to a decrease of resistin and an increase in adiponectin observed in animals, resulting in an overall increase in insulin sensitivity and in an improvement of glucose homeostasis. However, the first step to avoid insulin resistance and prevent the development of diabetes should be a reduction in body weight in overweight subjecs, and an increase in physical activity. There are now three published randomized controlled trials demonstrating that in high risk individuals, life style changes with modest weight lost, associated with diminished fat intake and an increase in fruit and vegetable consumption result in marked inhibition of the transition from the prediabetic state to manifest type 2 diabetes.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 706 ◽  
Author(s):  
Justin Hou Ming Yung ◽  
Adria Giacca

Obesity has been described as a global epidemic and is a low-grade chronic inflammatory disease that arises as a consequence of energy imbalance. Obesity increases the risk of type 2 diabetes (T2D), by mechanisms that are not entirely clarified. Elevated circulating pro-inflammatory cytokines and free fatty acids (FFA) during obesity cause insulin resistance and ß-cell dysfunction, the two main features of T2D, which are both aggravated with the progressive development of hyperglycemia. The inflammatory kinase c-jun N-terminal kinase (JNK) responds to various cellular stress signals activated by cytokines, free fatty acids and hyperglycemia, and is a key mediator in the transition between obesity and T2D. Specifically, JNK mediates both insulin resistance and ß-cell dysfunction, and is therefore a potential target for T2D therapy.


2017 ◽  
Vol 31 (1) ◽  
pp. 141-148 ◽  
Author(s):  
Melanie Cree-Green ◽  
Abhinav Gupta ◽  
Gregory V. Coe ◽  
Amy D. Baumgartner ◽  
Laura Pyle ◽  
...  

2009 ◽  
Vol 296 (4) ◽  
pp. E690-E701 ◽  
Author(s):  
Kamila S. Gwiazda ◽  
Ting-Lin B. Yang ◽  
Yalin Lin ◽  
James D. Johnson

There are strong links between obesity, elevated free fatty acids, and type 2 diabetes. Specifically, the saturated fatty acid palmitate has pleiotropic effects on β-cell function and survival. In the present study, we sought to determine the mechanism by which palmitate affects intracellular Ca2+, and in particular the role of the endoplasmic reticulum (ER). In human β-cells and MIN6 cells, palmitate rapidly increased cytosolic Ca2+ through a combination of Ca2+ store release and extracellular Ca2+ influx. Palmitate caused a reversible lowering of ER Ca2+, measured directly with the fluorescent protein-based ER Ca2+ sensor D1ER. Using another genetically encoded indicator, we observed long-lasting oscillations of cytosolic Ca2+ in palmitate-treated cells. In keeping with this observed ER Ca2+ depletion, palmitate induced rapid phosphorylation of the ER Ca2+ sensor protein kinase R-like ER kinase (PERK) and subsequently ER stress and β-cell death. We detected little palmitate-induced insulin secretion, suggesting that these Ca2+ signals are poorly coupled to exocytosis. In summary, we have characterized Ca2+-dependent mechanisms involved in altered β-cell function and survival induced by the free fatty acid palmitate. We present the first direct evidence that free fatty acids reduce ER Ca2+ and shed light on pathways involved in lipotoxicity and the pathogenesis of type 2 diabetes.


2018 ◽  
Vol 20 (11) ◽  
pp. 2661-2669 ◽  
Author(s):  
Sandro Spiller ◽  
Matthias Blüher ◽  
Ralf Hoffmann

Diabetes ◽  
2001 ◽  
Vol 50 (4) ◽  
pp. 810-816 ◽  
Author(s):  
G. Boden ◽  
X. Chen ◽  
E. Capulong ◽  
M. Mozzoli

Sign in / Sign up

Export Citation Format

Share Document