The Posterior Contralateral Negativity as a Temporal Indicator of Visuo-Spatial Processing

2005 ◽  
Vol 19 (3) ◽  
pp. 182-194 ◽  
Author(s):  
M. Wolber ◽  
E. Wascher

Abstract. The temporal segmentation of the processing stream between stimulus and response is a declared aim of many EEG-studies on cognitive processing. This goal, however, can only be reached when measures of high temporal sensitivity are available that are unequivocally assigned to a particular cognitive process. The present study evaluates the peak latency of the posterior contralateral negativity (PCN) as a temporal measure of visual spatial processing. In three experiments, we show systematic variability of the PCN latency with task demands. In visual search, PCN latency varied in the same direction as response times with the number of distractors. These effects, however, were smaller than the effects observed on response times, indicating that the process underlying the PCN might contribute to but did not determine response time effects. In contrast, in attentional cueing tasks and a stimulus localization task, where stimulus detection was the primarily addressed process, PCN latency varied to the same amount as manual response times. Thus, it is suggested that the latency of the PCN provides a reliable and valid temporal measure of target localization.

2017 ◽  
Author(s):  
Štěpán Bahník

Processing fluency, a metacognitive feeling of ease of cognitive processing, serves as a cue in various types of judgments. Response times are sometimes used for evaluation of fluency of a cognitive process; that is, shorter response times are said to indicate fluency. The present study tested whether disfluency may lead to faster decision times when it serves as a strong cue in judgment. Retrieval fluency was manipulated using previous presentation and phonological fluency by varying pronounceability of pseudowords. Both retrieval and phonological fluency increased liking of pseudowords. Furthermore, the results showed the predicted inverted-U shaped relationship between pronounceability and decision times. Decisions were faster for disfluent and fluent pseudowords than for moderately fluent pseudowords. The present study thus demonstrates the importance of separating different processes comprising judgment when response times are used as a proxy for processing fluency.


2017 ◽  
Author(s):  
Anoop Kuttikat ◽  
Valdas Noreika ◽  
Srivas Chennu ◽  
Nicholas Shenker ◽  
Tristan Bekinschtein ◽  
...  

AbstractChronic pain in CRPS has been linked to tactile misperceptions and deficits in somatotopic representation of the affected limb. Here, we identify altered cognitive processing of tactile stimuli in CRPS patients that we propose marks heterogeneity in tactile decision-making mechanisms. In a case-control design, we compared middle and late-latency somatosensory-evoked potentials (SEPs) in response to pseudo-randomised mechanical stimulation of the digits of both hands (including CRPS-affected and non-affected sides) between 13 CRPS patients and 13 matched healthy controls. During a task to discriminate the digit simulated, patients (compared to controls) had significantly lower accuracy and slowed response times but with high between-subject variability. At middle latencies (124-132 ms), tactile processing in patients relative to controls showed decrements in superior parietal lobe and precuneus (that were independent of task demands) but enhanced activity in superior frontal lobe (that were task-dependent). At late latencies, patients showed an augmented P300-like response under task demands that localised to supplementary motor area (SMA). Source activity in SMA correlated with slowed response times, while its scalp representation intriguingly correlated with better functioning of the affected limb, suggesting a compensatory mechanism. Future research should investigate the clinical utility of these putative markers of tactile decision-making mechanisms in CRPS.DisclosuresThe research was supported by funding from Cambridge Arthritis Research Endeavour (CARE). The study was sponsored by Cambridge University Hospitals NHS Foundation Trust and supported by its Rheumatology department. The authors report no conflicts of interest.PerspectiveWe present evidence of altered but highly variable cognitive processing (124 - 268ms latency) in response to mechanical tactile stimuli in patients with CRPS compared to healthy controls. Such mid-to-late latency responses could potentially provide convenient and robust biomarkers of abnormal perceptual decision-making mechanisms in CRPS to aid in clinical detection and treatment.


2019 ◽  
Vol 62 (5) ◽  
pp. 1486-1505
Author(s):  
Joshua M. Alexander

PurposeFrequency lowering in hearing aids can cause listeners to perceive [s] as [ʃ]. The S-SH Confusion Test, which consists of 66 minimal word pairs spoken by 6 female talkers, was designed to help clinicians and researchers document these negative side effects. This study's purpose was to use this new test to evaluate the hypothesis that these confusions will increase to the extent that low frequencies are altered.MethodTwenty-one listeners with normal hearing were each tested on 7 conditions. Three were control conditions that were low-pass filtered at 3.3, 5.0, and 9.1 kHz. Four conditions were processed with nonlinear frequency compression (NFC): 2 had a 3.3-kHz maximum audible output frequency (MAOF), with a start frequency (SF) of 1.6 or 2.2 kHz; 2 had a 5.0-kHz MAOF, with an SF of 1.6 or 4.0 kHz. Listeners' responses were analyzed using concepts from signal detection theory. Response times were also collected as a measure of cognitive processing.ResultsOverall, [s] for [ʃ] confusions were minimal. As predicted, [ʃ] for [s] confusions increased for NFC conditions with a lower versus higher MAOF and with a lower versus higher SF. Response times for trials with correct [s] responses were shortest for the 9.1-kHz control and increased for the 5.0- and 3.3-kHz controls. NFC response times were also significantly longer as MAOF and SF decreased. The NFC condition with the highest MAOF and SF had statistically shorter response times than its control condition, indicating that, under some circumstances, NFC may ease cognitive processing.ConclusionsLarge differences in the S-SH Confusion Test across frequency-lowering conditions show that it can be used to document a major negative side effect associated with frequency lowering. Smaller but significant differences in response times for correct [s] trials indicate that NFC can help or hinder cognitive processing, depending on its settings.


Author(s):  
Štěpán Bahník

Abstract. Processing fluency, a metacognitive feeling of ease of cognitive processing, serves as a cue in various types of judgments. Processing fluency is sometimes evaluated by response times, with shorter response times indicating higher fluency. The present study examined existence of the opposite association; that is, it tested whether disfluency may lead to faster decision times when it serves as a strong cue in judgment. Retrieval fluency was manipulated in an experiment using previous presentation and phonological fluency by varying pronounceability of pseudowords. Participants liked easy-to-pronounce and previously presented words more. Importantly, their decisions were faster for hard-to-pronounce and easy-to-pronounce pseudowords than for pseudowords moderate in pronounceability. The results thus showed an inverted-U shaped relationship between fluency and decision times. The findings suggest that disfluency can lead to faster decision times and thus demonstrate the importance of separating different processes comprising judgment when response times are used as a measure of processing fluency.


Author(s):  
Peter Khooshabeh ◽  
Mary Hegarty ◽  
Thomas F. Shipley

Two experiments tested the hypothesis that imagery ability and figural complexity interact to affect the choice of mental rotation strategies. Participants performed the Shepard and Metzler (1971) mental rotation task. On half of the trials, the 3-D figures were manipulated to create “fragmented” figures, with some cubes missing. Good imagers were less accurate and had longer response times on fragmented figures than on complete figures. Poor imagers performed similarly on fragmented and complete figures. These results suggest that good imagers use holistic mental rotation strategies by default, but switch to alternative strategies depending on task demands, whereas poor imagers are less flexible and use piecemeal strategies regardless of the task demands.


1994 ◽  
Vol 37 (2) ◽  
pp. 418-421 ◽  
Author(s):  
Robert Kail

The present work was conducted to demonstrate a method that could be used to assess the hypothesis that children with specific language impairment (SLI) often respond more slowly than unimpaired children on a range of tasks. The data consisted of 22 pairs of mean response times (RTs) obtained from previously published studies; each pair consisted of a mean RT for a group of children with SLI for an experimental condition and the corresponding mean RT for a group of children without SLI. If children with SLI always respond more slowly than unimpaired children and by an amount that does not vary across tasks, then RTs for children with SLI should increase linearly as a function of RTs for age-matched control children without SLI. This result was obtained and is consistent with the view that differences in processing speed between children with and without SLI reflect some general (i.e., non-task specific) component of cognitive processing. Future applications of the method are suggested.


2020 ◽  
Author(s):  
Arkady Zgonnikov ◽  
David Abbink ◽  
Gustav Markkula

Laboratory studies of abstract, highly controlled tasks point towards noisy evidence accumulation as a key mechanism governing decision making. Yet it is unclear whether the cognitive processes implicated in simple, isolated decisions in the lab are as paramount to decisions that are ingrained in more complex behaviors, such as driving. Here we aim to address the gap between modern cognitive models of decision making and studies of naturalistic decision making in drivers, which so far have provided only limited insight into the underlying cognitive processes. We investigate drivers' decision making during unprotected left turns, and model the cognitive process driving these decisions. Our model builds on the classical drift-diffusion model, and emphasizes, first, the drift rate linked to the relevant perceptual quantities dynamically sampled from the environment, and, second, collapsing decision boundaries reflecting the dynamic constraints imposed on the decision maker’s response by the environment. We show that the model explains the observed decision outcomes and response times, as well as substantial individual differences in those. Through cross-validation, we demonstrate that the model not only explains the data, but also generalizes to out-of-sample conditions, effectively providing a way to predict human drivers’ behavior in real time. Our results reveal the cognitive mechanisms of gap acceptance decisions in human drivers, and exemplify how simple cognitive process models can help us to understand human behavior in complex real-world tasks.


Author(s):  
Nabil Hasshim ◽  
Michelle Downes ◽  
Sarah Bate ◽  
Benjamin A. Parris

Abstract. Previous analyses of response time distributions have shown that the Stroop effect is observed in the mode (μ) and standard deviation (σ) of the normal part of the distribution, as well as its tail (τ). Specifically, interference related to semantic and response processes has been suggested to specifically affect the mode and tail, respectively. However, only one study in the literature has directly manipulated semantic interference, and none manipulating response interference. The present research aims to address this gap by manipulating both semantic and response interference in a manual response Stroop task, and examining how these components of Stroop interference affect the response time distribution. Ex-Gaussian analysis showed both semantic and response conflict to only affect τ. Analyzing the distribution by rank-ordered response times (Vincentizing) showed converging results as the magnitude of both semantic and response conflict increased with slower response times. Additionally, response conflict appeared earlier on the distribution compared to semantic conflict. These findings further highlight the difficulty in attributing specific psychological processes to different parameters (i.e., μ, σ, and τ). The effect of different response modalities on the makeup of Stroop interference is also discussed.


2013 ◽  
Vol 3 (4) ◽  
pp. 557-563 ◽  
Author(s):  
Chrystalina A. Antoniades ◽  
Zheyu Xu ◽  
R.H.S. Carpenter ◽  
Roger A. Barker

2020 ◽  
pp. 136216882091402
Author(s):  
James F. Lee ◽  
Paul A. Malovrh ◽  
Stephen Doherty ◽  
Alecia Nichols

Recent research on the effects of processing instruction (PI) have incorporated online research methods in order to demonstrate that PI has effects on cognitive processing behaviors as well as on accuracy (e.g. Lee & Doherty, 2019a). The present study uses self-paced reading and a moving windows technique to examine the effects of PI on second language (L2) learners’ processing of Spanish active and passive sentences to explore the effects of PI on instructed second language acquisition. One group received PI but the Control group did not. Between group comparisons on passive sentences showed changes in performance for the PI group but not the Control group with the PI group gaining in accuracy and processing speed, specifically faster response times to select the correct picture and faster reading time on passive verb forms. Within group analyses showed changes in the PI group’s performance on all dependent variables at the immediate posttest and a subsequent decline in performance at the delayed posttest (8 weeks later). We discuss the implications of our results and treatment format for classroom and hybridized instruction.


Sign in / Sign up

Export Citation Format

Share Document