The P3 Parietal-To-Frontal Shift Relates to Age-Related Slowing in a Selective Attention Task

2017 ◽  
Vol 31 (2) ◽  
pp. 49-66 ◽  
Author(s):  
Eva-Maria Reuter ◽  
Claudia Voelcker-Rehage ◽  
Solveig Vieluf ◽  
Franca Parianen Lesemann ◽  
Ben Godde

Abstract. Older adults recruit relatively more frontal as compared to parietal resources in a variety of cognitive and perceptual tasks. It is not yet clear whether this parietal-to-frontal shift is a compensatory mechanism, or simply reflects a reduction in processing efficiency. In this study we aimed to investigate how the parietal-to-frontal shift with aging relates to selective attention. Fourteen young and 26 older healthy adults performed a color Flanker task under three conditions (incongruent, congruent, neutral) and event-related potentials (ERPs) were measured. The P3 was analyzed for the electrode positions Pz, Cz, and Fz as an indicator of the parietal-to-frontal shift. Further, behavioral performance and other ERP components (P1 and N1 at electrodes O1 and O2; N2 at electrodes Fz and Cz) were investigated. First young and older adults were compared. Older adults had longer response times, reduced accuracy, longer P3 latencies, and a more frontal distribution of P3 than young adults. These results confirm the parietal-to-frontal shift in the P3 with age for the selective attention task. Second, based on the differences between frontal and parietal P3 activity the group of older adults was subdivided into those showing a rather equal distribution of the P3 and older participants showing a strong frontal focus of the P3. Older adults with a more frontally distributed P3 had longer response times than participants with a more equally distributed P3. These results suggest that the frontally distributed P3 observed in older adults has no compensatory function in selective attention but rather indicates less efficient processing and slowing with age.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Seçkin Arslan ◽  
Katerina Palasis ◽  
Fanny Meunier

Abstract This study reports on an event-related potentials experiment to uncover whether per-millisecond electrophysiological brain activity and analogous behavioural responses are age-sensitive when comprehending anaphoric (referent-first) and cataphoric (pronoun-first) pronouns. Two groups of French speakers were recruited (young n = 18; aged 19–35 and older adults n = 15; aged 57–88) to read sentences where the anaphoric/cataphoric pronouns and their potential referents either matched or mismatched in gender. Our findings indicate that (1) the older adults were not less accurate or slower in their behavioural responses to the mismatches than the younger adults, (2) both anaphoric and cataphoric conditions evoked a central/parietally distributed P600 component with similar timing and amplitude in both the groups. Importantly, mean amplitudes of the P600 effect were modulated by verbal short-term memory span in the older adults but not in the younger adults, (3) nevertheless, the older but not the younger adults displayed an additional anterior negativity emerging on the frontal regions in response to the anaphoric mismatches. These results suggest that pronoun processing is resilient in healthy ageing individuals, but that functional recruitment of additional brain regions, evidenced with the anterior negativity, compensates for increased processing demands in the older adults’ anaphora processing.


1979 ◽  
Vol 34 (3) ◽  
pp. 388-395 ◽  
Author(s):  
J. M. Ford ◽  
R. F. Hink ◽  
W. F. Hopkins ◽  
W. T. Roth ◽  
A. Pfefferbaum ◽  
...  

i-Perception ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 204166952097841
Author(s):  
Yanna Ren ◽  
Zhihan Xu ◽  
Sa Lu ◽  
Tao Wang ◽  
Weiping Yang

Age-related audio-visual integration (AVI) has been investigated extensively; however, AVI ability is either enhanced or reduced with ageing, and this matter is still controversial because of the lack of systematic investigations. To remove possible variates, 26 older adults and 26 younger adults were recruited to conduct meaningless and semantic audio-visual discrimination tasks to assess the ageing effect of AVI systematically. The results for the mean response times showed a significantly faster response to the audio-visual (AV) target than that to the auditory (A) or visual (V) target and a significantly faster response to all targets by the younger adults than that by the older adults (A, V, and AV) in all conditions. In addition, a further comparison of the differences between the probability of audio-visual cumulative distributive functions (CDFs) and race model CDFs showed delayed AVI effects and a longer time window for AVI in older adults than that in younger adults in all conditions. The AVI effect was lower in older adults than that in younger adults during simple meaningless image discrimination (63.0 ms vs. 108.8 ms), but the findings were inverse during semantic image discrimination (310.3 ms vs. 127.2 ms). In addition, there was no significant difference between older and younger adults during semantic character discrimination (98.1 ms vs. 117.2 ms). These results suggested that AVI ability was impaired in older adults, but a compensatory mechanism was established for processing sematic audio-visual stimuli.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2323
Author(s):  
Elizabeth R. Paitel ◽  
Kristy A. Nielson

Aging is accompanied by frontal lobe and non-dominant hemisphere recruitment that supports executive functioning, such as inhibitory control, which is crucial to all cognitive functions. However, the spatio-temporal sequence of processing underlying successful inhibition and how it changes with age is understudied. Thus, we capitalized on the temporal precision of event-related potentials (ERPs) to assess the functional lateralization of N200 (conflict monitoring) and P300 (inhibitory performance evaluation) in young and healthy older adults during comparably performed successful stop-signal inhibition. We additionally used temporal principal components analysis (PCA) to further interrogate the continuous spatio-temporal dynamics underlying N200 and P300 activation for each group. Young adults demonstrated left hemisphere-dominant N200, while older adults demonstrated overall larger amplitudes and right hemisphere dominance. N200 activation was explained by a single PCA factor in both age groups, but with a more anterior scalp distribution in older adults. The P300 amplitudes were larger in the right hemisphere in young, but bilateral in old, with old larger than young in the left hemisphere. P300 was also explained by a single factor in young adults but by two factors in older adults, including distinct parieto-occipital and anterior activation. These findings highlight the differential functional asymmetries of conflict monitoring (N200) and inhibitory evaluation and adaptation (P300) processes and further illuminate unique age-related spatio-temporal recruitment patterns. Older adults demonstrated lateralized recruitment during conflict processing and bilateral recruitment during evaluation and adaptation, with anterior recruitment common to both processes. These fine-grained analyses are critically important for more precise understanding of age-related compensatory activation.


Author(s):  
Elizabeth R Paitel ◽  
Kristy A Nielson

Aging is accompanied by frontal lobe and non-dominant hemisphere recruitment that supports executive functioning, such as inhibitory control, which is crucial to all cognitive functions. Yet, the spatio-temporal sequence of processing underlying successful inhibition and how it changes with age is understudied. Thus, we assessed N200 (conflict monitoring) and P300 (response inhibition, performance evaluation) event-related potentials (ERPs) in young and healthy older adults during comparably performed successful stop-signal inhibition. We additionally interrogated the continuous spatio-temporal dynamics of N200- and P300-related activation within each group. Young adults had left hemisphere dominant N200, while older adults had overall larger amplitudes and right hemisphere dominance. N200 activation was biphasic in both groups but differed in scalp topography. P300 also differed, with larger right amplitudes in young, but bilateral amplitudes in old, with old larger than young in the left hemisphere. P300 was characterized by an early parieto-occipital peak in both groups, followed by a parietal slow wave only in older adults. A temporally similar but topographically different final wave followed in both groups that showed anterior recruitment in older adults. These findings illuminate differential age-related spatio-temporal recruitment patterns for conflict monitoring and response inhibition that are critically important for understanding age-related compensatory activation.


2021 ◽  
Vol 15 ◽  
Author(s):  
Petra Csizmadia ◽  
Bela Petro ◽  
Petia Kojouharova ◽  
Zsófia Anna Gaál ◽  
Katalin Scheiling ◽  
...  

The human face is one of the most frequently used stimuli in vMMN (visual mismatch negativity) research. Previous studies showed that vMMN is sensitive to facial emotions and gender, but investigations of age-related vMMN differences are relatively rare. The aim of this study was to investigate whether the models’ age in photographs were automatically detected, even if the photographs were not parts of the ongoing task. Furthermore, we investigated age-related differences, and the possibility of different sensitivity to photographs of participants’ own versus different ages. We recorded event-related potentials (ERPs) to faces of young and old models in younger (N = 20; 18–30 years) and older groups (N = 20; 60–75 years). The faces appeared around the location of the field of a tracking task. In sequences the young or the old faces were either frequent (standards) or infrequent (deviants). According to the results, a regular sequence of models’ age is automatically registered, and faces violating the models’ age elicited the vMMN component. However, in this study vMMN emerged only in the older group to same-age deviants. This finding is explained by the less effective inhibition of irrelevant stimuli in the elderly, and corresponds to own-age bias effect of recognition studies.


2020 ◽  
Author(s):  
Alexandra Begau ◽  
Laura-Isabelle Klatt ◽  
Edmund Wascher ◽  
Daniel Schneider ◽  
Stephan Getzmann

AbstractIn natural conversations, visible mouth and lip movements play an important role in speech comprehension. There is evidence that visual speech information improves speech comprehension, especially for older adults and under difficult listening conditions. However, the neurocognitive basis is still poorly understood. The present EEG experiment investigated the benefits of audiovisual speech in a dynamic cocktail-party scenario with 22 (aged 20 to 34 years) younger and 20 (aged 55 to 74 years) older participants. We presented three simultaneously talking faces with a varying amount of visual speech input (still faces, visually unspecific and audiovisually congruent). In a two-alternative forced-choice task, participants had to discriminate target words (“yes” or “no”) among two distractors (one-digit number words). In half of the experimental blocks, the target was always presented from a central position, in the other half, occasional switches to a lateral position could occur. We investigated behavioral and electrophysiological modulations due to age, location switches and the content of visual information, analyzing response times and accuracy as well as the P1, N1, P2, N2 event-related potentials (ERPs) and the contingent negative variation (CNV) in the EEG. We found that audiovisually congruent speech information improved performance and modulated ERP amplitudes in both age groups, suggesting enhanced preparation and integration of the subsequent auditory input. However, these benefits were only observed as long as no location switches occurred. To conclude, meaningful visual information in a multi-talker setting, when presented from the expected location, is shown to be beneficial for both younger and older adults.


2014 ◽  
Vol 28 (3) ◽  
pp. 215-224 ◽  
Author(s):  
Edmund Wascher ◽  
Stephan Getzmann

Deficient information processing with increasing age has been assigned to reduced efficiency in frontal executive control functions. Dopamine has been assumed to play a central role for this decline. Dopamine, however, is also essential for the maintenance of motivation for a longer period of time and is therefore a core factor for mental fatigue. Combining these two findings, we tested to what degree older adults are more prone to performance loss due to increasing time on task than younger adults. Twelve younger and twelve older participants performed an inhibition of return task for 80 min. Performance declined in the older participants but not in the young. Event-related potentials (ERPs) of the EEG, however, showed distinct changes with time on task primarily for young participants. The dissociation between behavioral and ERP results indicates that changes in ERPs of the young participants could reflect adaptations to the task rather than fatigue. This is evident from very distinct changes of the posterior N1 component in this group. The failing (or rather unspecific) adaptation to the task in older adults might have been a consequence of lacking frontal executive control functions reflected in a massive reduction of the N2 component of the ERP, relative to the young participants.


Sign in / Sign up

Export Citation Format

Share Document