scholarly journals Near-bottom flow and flow resistance for currents obliquely incident to two-dimensional roughness elements

2000 ◽  
Vol 105 (C11) ◽  
pp. 26253-26264 ◽  
Author(s):  
Analía I. Barrantes ◽  
Ole S. Madsen
1986 ◽  
Vol 13 (5) ◽  
pp. 523-527 ◽  
Author(s):  
Ahmed M.El Khashab

Flow in rough steep open channels is mostly found in mountain streams and in flow overtopping protected weirs. In both cases, the energy of the flowing stream may be dissipated by artificial means so that the flowing water does not result in serious damage due to scour or erosion downstream of the main slope. The best way of achieving this purpose is to lead the flow over a series of steps. In this investigation, the author tried to determine the form drag of stepped steep open channels, considering the steps as two-dimensional triangular roughness elements. Key words: open channel flow, flow resistance, channel roughness, form drag, steep channels.


2014 ◽  
Vol 9 (4) ◽  
pp. 65-73
Author(s):  
Stepan Tolkachev ◽  
Valeria Kaprilevskaya ◽  
Viktor Kozlov

In the article using a liquid crystal thermography investigated the development of stationary and secondary disturbances, which were excited by cylindrical and two-dimensional roughness elements. It was shown, that two-dimensional roughness element has a destabilizing effect on disturbances, induced by cylindrical roughness element. Also the twodimensional roughness element is able to excite the stationary structures, and then the secondary disturbances the frequency interval of which is lower than in the case of stationary vortices excitation by cylindrical roughness element


Author(s):  
Stepan Tolkachev ◽  
Victor Kozlov ◽  
Valeriya Kaprilevskaya

In this article, the results of research about stationary and secondary disturbances development behind the localized and two-dimensional roughness elements are presented. It is shown that the two-dimensional roughness element has a destabilizing effect on the disturbances induced by the three-dimensional roughness element lying upstream. In this case, the two-dimensional roughness element causes the appearance of stationary structures, and then secondary perturbations, whose frequency range lies lower than in the case of the stationary vortices excited by a three-dimensional roughness element.


1989 ◽  
Vol 111 (2) ◽  
pp. 149-153 ◽  
Author(s):  
E. Logan ◽  
P. Phataraphruk

The response of a fully developed pipe flow to wall mounted roughness elements of rectangular cross section was investigated experimentally using a probe with a single hot-wire. Four heights of rectangular, ring-type elements were installed rigidly in a 63.5-mm diameter, smooth-walled, circular pipe in which air was flowing at a Reynolds number of 50,000. After passing over the roughness element, the flow recovery occurred in three stages. The three flow regions are delineated, and the velocity profiles for each are correlated.


2015 ◽  
Vol 12 (5) ◽  
pp. 1145-1156 ◽  
Author(s):  
Chen Ye ◽  
Xing-nian Liu ◽  
Xie-kang Wang

1984 ◽  
Vol 11 (4) ◽  
pp. 815-823 ◽  
Author(s):  
S. P. Chee ◽  
M. R. I. Haggag

This paper deals with the underlying theory of the hydraulics of channel flow with a buoyant boundary as an ice cover. It commences by developing the velocity distribution in two-dimensional covered channel flow using the Reynolds form of the Navier–Stokes equation in conjunction with the Prandtl – Von Karman mixing length theory. Central to the theory is the division of the channel into two subsections. From the developed velocity profile, the functional relationship for the division surface is obtained. Finally, the composite roughness of the channel is derived.Experimental verification of the developed theory was conducted in laboratory flumes. Seven cross-sectional shapes were utilized. Ice covers were simulated with polyethylene plastic pellets as well as floating plywood boards with roughness elements attached to the underside. Velocity profile and composite roughness measurements made in these flumes were in good agreement with the theoretical equations. The composite roughness relationship derived from the theory is very comprehensive, as it takes into account not only the varying rugosities of the channel and its floating boundary but also the shape of the cross section. Key words: composite roughness, ice cover, flow resistance, velocity profile, buoyant boundary, covered channel.


Sign in / Sign up

Export Citation Format

Share Document