scholarly journals Relevance of mountain wave cooling for the formation of polar stratospheric clouds over Scandinavia: Mesoscale dynamics and observations for January 1997

2001 ◽  
Vol 106 (D2) ◽  
pp. 1569-1581 ◽  
Author(s):  
Andreas Dörnbrack ◽  
Martin Leutbecher ◽  
Jens Reichardt ◽  
Andreas Behrendt ◽  
Klaus-Peter Müller ◽  
...  
2009 ◽  
Vol 9 (22) ◽  
pp. 8825-8840 ◽  
Author(s):  
A. J. McDonald ◽  
S. E. George ◽  
R. M. Woollands

Abstract. A combination of POAM III aerosol extinction and CHAMP RO temperature measurements are used to examine the role of atmospheric gravity waves in the formation of Antarctic Polar Stratospheric Clouds (PSCs). POAM III aerosol extinction observations and quality flag information are used to identify Polar Stratospheric Clouds using an unsupervised clustering algorithm. A PSC proxy, derived by thresholding Met Office temperature analyses with the PSC Type Ia formation temperature (TNAT), shows general agreement with the results of the POAM III analysis. However, in June the POAM III observations of PSC are more abundant than expected from temperature threshold crossings in five out of the eight years examined. In addition, September and October PSC identified using temperature thresholding is often significantly higher than that derived from POAM III; this observation probably being due to dehydration and denitrification. Comparison of the Met Office temperature analyses with corresponding CHAMP observations also suggests a small warm bias in the Met Office data in June. However, this bias cannot fully explain the differences observed. Analysis of CHAMP data indicates that temperature perturbations associated with gravity waves may partially explain the enhanced PSC incidence observed in June (relative to the Met Office analyses). For this month, approximately 40% of the temperature threshold crossings observed using CHAMP RO data are associated with small-scale perturbations. Examination of the distribution of temperatures relative to TNAT shows a large proportion of June data to be close to this threshold, potentially enhancing the importance of gravity wave induced temperature perturbations. Inspection of the longitudinal structure of PSC occurrence in June 2005 also shows that regions of enhancement are geographically associated with the Antarctic Peninsula; a known mountain wave "hotspot". The latitudinal variation of POAM III observations means that we only observe this region in June–July, and thus the true pattern of enhanced PSC production may continue operating into later months. The analysis has shown that early in the Antarctic winter stratospheric background temperatures are close to the TNAT threshold (and PSC formation), and are thus sensitive to temperature perturbations associated with mountain wave activity near the Antarctic peninsula (40% of PSC formation). Later in the season, and at latitudes away from the peninsula, temperature perturbations associated with gravity waves contribute to about 15% of the observed PSC (a value which corresponds well to several previous studies). This lower value is likely to be due to colder background temperatures already achieving the TNAT threshold unaided. Additionally, there is a reduction in the magnitude of gravity waves perturbations observed as POAM III samples poleward of the peninsula.


1994 ◽  
Vol 21 (13) ◽  
pp. 1335-1338 ◽  
Author(s):  
S. Godin ◽  
G. Mégie ◽  
C. David ◽  
D. Haner ◽  
C. Flesia ◽  
...  

2021 ◽  
Vol 21 (12) ◽  
pp. 9515-9543
Author(s):  
Michael Weimer ◽  
Jennifer Buchmüller ◽  
Lars Hoffmann ◽  
Ole Kirner ◽  
Beiping Luo ◽  
...  

Abstract. Polar stratospheric clouds (PSCs) are a driver for ozone depletion in the lower polar stratosphere. They provide surface for heterogeneous reactions activating chlorine and bromine reservoir species during the polar night. The large-scale effects of PSCs are represented by means of parameterisations in current global chemistry–climate models, but one process is still a challenge: the representation of PSCs formed locally in conjunction with unresolved mountain waves. In this study, we investigate direct simulations of PSCs formed by mountain waves with the ICOsahedral Nonhydrostatic modelling framework (ICON) with its extension for Aerosols and Reactive Trace gases (ART) including local grid refinements (nesting) with two-way interaction. Here, the nesting is set up around the Antarctic Peninsula, which is a well-known hot spot for the generation of mountain waves in the Southern Hemisphere. We compare our model results with satellite measurements of PSCs from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and gravity wave observations of the Atmospheric Infrared Sounder (AIRS). For a mountain wave event from 19 to 29 July 2008 we find similar structures of PSCs as well as a fairly realistic development of the mountain wave between the satellite data and the ICON-ART simulations in the Antarctic Peninsula nest. We compare a global simulation without nesting with the nested configuration to show the benefits of adding the nesting. Although the mountain waves cannot be resolved explicitly at the global resolution used (about 160 km), their effect from the nested regions (about 80 and 40 km) on the global domain is represented. Thus, we show in this study that the ICON-ART model has the potential to bridge the gap between directly resolved mountain-wave-induced PSCs and their representation and effect on chemistry at coarse global resolutions.


2020 ◽  
Author(s):  
Michael Weimer ◽  
Jennifer Buchmüller ◽  
Lars Hoffmann ◽  
Ole Kirner ◽  
Beiping Luo ◽  
...  

Abstract. Polar stratospheric clouds (PSCs) are a driver for ozone depletion in the lower polar stratosphere. They provide surfaces for heterogeneous reactions activating chlorine and bromine reservoir species during the polar night. PSCs are represented in current global chemistry-climate models, but one process is still a challenge: the representation of PSCs formed locally in conjunction with unresolved mountain waves. In this study, we present simulations with the ICOsahedral Nonhydrostatic modelling framework (ICON) with its extension for Aerosols and Reactive Trace gases (ART) that include local grid refinements (nesting) with two-way interaction. Here, the nesting is set up around the Antarctic Peninsula which is a well-known hot spot for the generation of mountain waves in the southern hemisphere. We compare our model results with satellite measurements from the Cloud-Aerosol LIdar with Orthogonal Polarisation (CALIOP) and the Atmospheric InfraRed Sounder (AIRS). We study a mountain wave event that took place from 19 to 29 July 2008 and find similar structures of PSCs as well as a fairly realistic development of the mountain wave in the Antarctic Peninsula nest. We compare a global simulation without nesting with the nested configuration to show the benefit. Although the mountain waves cannot be resolved adequately in the used global resolution (about 160 km), their effect from the nested regions (about 80 and 40 km) on the global domain is represented. Thus, we show in this study that by using the two-way nesting technique the gap between directly resolved mountain-wave induced PSCs and their representation and effect on chemistry in coarse global resolutions can be bridged by the ICON-ART model.


2018 ◽  
Vol 18 (3) ◽  
pp. 1945-1975 ◽  
Author(s):  
Alyn Lambert ◽  
Michelle L. Santee

Abstract. We investigate the accuracy and precision of polar lower stratospheric temperatures (100–10 hPa during 2008–2013) reported in several contemporary reanalysis datasets comprising two versions of the Modern-Era Retrospective analysis for Research and Applications (MERRA and MERRA-2), the Japanese 55-year Reanalysis (JRA-55), the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-I), and the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (NCEP-CFSR). We also include the Goddard Earth Observing System model version 5.9.1 near-real-time analysis (GEOS-5.9.1). Comparisons of these datasets are made with respect to retrieved temperatures from the Aura Microwave Limb Sounder (MLS), Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) Global Positioning System (GPS) radio occultation (RO) temperatures, and independent absolute temperature references defined by the equilibrium thermodynamics of supercooled ternary solutions (STSs) and ice clouds. Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations of polar stratospheric clouds are used to determine the cloud particle types within the Aura MLS geometric field of view. The thermodynamic calculations for STS and the ice frost point use the colocated MLS gas-phase measurements of HNO3 and H2O. The estimated bias and precision for the STS temperature reference, over the 68 to 21 hPa pressure range, are 0.6–1.5 and 0.3–0.6 K, respectively; for the ice temperature reference, they are 0.4 and 0.3 K, respectively. These uncertainties are smaller than those estimated for the retrieved MLS temperatures and also comparable to GPS RO uncertainties (bias  <  0.2 K, precision  >  0.7 K) in the same pressure range. We examine a case study of the time-varying temperature structure associated with layered ice clouds formed by orographic gravity waves forced by flow over the Palmer Peninsula and compare how the wave amplitudes are reproduced by each reanalysis dataset. We find that the spatial and temporal distribution of temperatures below the ice frost point, and hence the potential to form ice polar stratospheric clouds (PSCs) in model studies driven by the reanalyses, varies significantly because of the underlying differences in the representation of mountain wave activity. High-accuracy COSMIC temperatures are used as a common reference to intercompare the reanalysis temperatures. Over the 68–21 hPa pressure range, the biases of the reanalyses with respect to COSMIC temperatures for both polar regions fall within the narrow range of −0.6 K to +0.5 K. GEOS-5.9.1, MERRA, MERRA-2, and JRA-55 have predominantly cold biases, whereas ERA-I has a predominantly warm bias. NCEP-CFSR has a warm bias in the Arctic but becomes substantially colder in the Antarctic. Reanalysis temperatures are also compared with the PSC reference temperatures. Over the 68–21 hPa pressure range, the reanalysis temperature biases are in the range −1.6 to −0.3 K with standard deviations  ∼  0.6 K for the CALIOP STS reference, and in the range −0.9 to +0.1 K with standard deviations  ∼  0.7 K for the CALIOP ice reference. Comparisons of MLS temperatures with the PSC reference temperatures reveal vertical oscillations in the MLS temperatures and a significant low bias in MLS temperatures of up to 3 K.


1995 ◽  
Vol 13 (4) ◽  
pp. 395-405
Author(s):  
R. Meerkoetter

Abstract. Based on radiative transfer calculations, it is studied whether polar stratospheric clouds (PSCs) can be detected by the new Global Ozone Monitoring Experiment (GOME) on board the second European Research Satellite (ERS-2) planned to be launched in 1995. It is proposed to identify PSC-covered areas by use of an indicator, the Normalized Radiance Difference (NRD), which relates the difference of two spectral radiances at 0.515 µm and 0.67 µm to one radiance measured in the centre of the oxygen A-band at 0.76 µm. Simulations are carried out for two solar zenith angles, θ=78.5° and θ=86.2°. They indicate that, in presence of PSCs and with increasing solar zenith angles above θ=80°, the NRD decrease to values clearly below those derived under conditions of a cloud-free stratosphere. Results for θ=86.2° show that the method is successful independent of existing tropospheric clouds, of different tropospheric aerosol loadings, and of surface albedos. Results for θ=78.5° illustrate that PSC detection under conditions of smaller solar zenith angles θ80° needs additional information about tropospheric clouds.


Sign in / Sign up

Export Citation Format

Share Document