Laboratory investigation of possible ice nucleation by ionizing radiation in pure water at tropospheric temperatures

2001 ◽  
Vol 106 (D3) ◽  
pp. 3033-3036 ◽  
Author(s):  
L. H. Seeley ◽  
G. T. Seidler ◽  
J. G. Dash
2019 ◽  
Vol 19 (9) ◽  
pp. 6035-6058 ◽  
Author(s):  
Anand Kumar ◽  
Claudia Marcolli ◽  
Thomas Peter

Abstract. Divergent ice nucleation (IN) efficiencies of quartz, an important component of atmospheric mineral dust, have been reported in previous studies. We show here that quartz particles obtain their IN activity from milling and that quartz aged in water loses most of its IN efficiency relative to freshly milled quartz. Since most studies so far reported IN activities of commercial quartz dusts that were milled already by the manufacturer, IN active samples prevailed. Also, the quartz surface – much in contrast to that of feldspars – is not prone to ammonia-induced IN enhancement. In detail we investigate the influence of solutes on the IN efficiency of various silica (SiO2) particles (crystalline and amorphous) with special focus on quartz. We performed immersion freezing experiments and relate the observed variability in IN activity to the influence of milling, the aging time and to the exposure conditions since milling. Immersion freezing with silica particles suspended in pure water or aqueous solutions of NH3, (NH4)2SO4, NH4HSO4, Na2SO4 and NaOH, with solute concentrations corresponding to water activities aw=0.9–1.0, were investigated in emulsified droplets by means of differential scanning calorimetry (DSC) and analyzed in terms of the onset temperature of the heterogeneous freezing signal Thet and the heterogeneously frozen water volume fraction Fhet. Quartz particles, which originate from milling coarse samples, show a strong heterogeneous freezing peak in pure water with Thet equal to 247–251 K. This IN activity disappears almost completely after aging for 7 months in pure water in a glass vial. During this time quartz slowly grew by incorporating silicic acid leached from the glass vial. Conversely, the synthesized amorphous silica samples show no discernable heterogeneous freezing signal unless they were milled. This implies that defects provide IN activity to silica surfaces, whereas the IN activity of a natural quartz surface is negligible, when it grew under near-equilibrium conditions. For suspensions containing milled quartz and the solutes (NH4)2SO4, NH4HSO4 or Na2SO4, Thet approximately follows ThetΔawhet(aw), the heterogeneous freezing onset temperatures that obey Δawhet criterion, i.e., ThetΔawhet(aw)=Tmelt(aw+Δawhet) with Δawhet being a constant offset with respect to the ice melting point curve, similar to homogeneous IN. This water-activity-based description is expected to hold when the mineral surface is not altered by the presence of the solutes. On the other hand, we observe a slight enhancement in Fhet in the presence of these solutes, implying that the compliance with the Δawhet criterion does not necessarily imply constant Fhet. In contrast to the sulfates, dilute solutions of NH3 or NaOH (molality ≥5×10-4 mol kg−1) reveal Thet by 3–8 K lower than ThetΔawhet(aw), indicating a significant impact on the mineral surface. The lowering of Thet of quartz suspended in dilute NH3 solutions is opposite to the distinct increase in Thet that we found in emulsion freezing experiments with aluminosilicates, namely feldspars, kaolinite, gibbsite and micas. We ascribe this decrease in IN activity to the increased dissolution of quartz under alkaline conditions. The defects that constitute the active sites appear to be more susceptible to dissolution and therefore disappear first on a dissolving surface.


2018 ◽  
Vol 20 (45) ◽  
pp. 28435-28444 ◽  
Author(s):  
Kota Ando ◽  
Masashi Arakawa ◽  
Akira Terasaki

The freezing time of pure-water droplets is measured in a vacuum and simulated by ice nucleation theory.


2018 ◽  
Vol 11 (9) ◽  
pp. 5315-5334 ◽  
Author(s):  
Michael Polen ◽  
Thomas Brubaker ◽  
Joshua Somers ◽  
Ryan C. Sullivan

Abstract. Droplet freezing techniques (DFTs) have been used for half a century to measure the concentration of ice-nucleating particles (INPs) in the atmosphere and determine their freezing properties to understand the effects of INPs on mixed-phase clouds. The ice nucleation community has recently adopted droplet freezing assays as a commonplace experimental approach. These droplet freezing experiments are often limited by contamination that causes nonhomogeneous freezing of the “pure” water used to generate the droplets in the heterogeneous freezing temperature regime that is being measured. Interference from the early freezing of water is often overlooked and not fully reported, or measurements are restricted to analyzing the more ice-active INPs that freeze well above the temperature of the background water. However, this avoidance is not viable for analyzing the freezing behavior of less active INPs in the atmosphere that still have potentially important effects on cold-cloud microphysics. In this work we review a number of recent droplet freezing techniques that show great promise in reducing these interferences, and we report our own extensive series of measurements using similar methodologies. By characterizing the performance of different substrates on which the droplets are placed and of different pure water generation techniques, we recommend best practices to reduce these interferences. We tested different substrates, water sources, droplet matrixes, and droplet sizes to provide deeper insight into what methodologies are best suited for DFTs. Approaches for analyzing droplet freezing temperature spectra and accounting and correcting for the background “pure” water control spectrum are also presented. Finally, we propose experimental and data analysis procedures for future homogeneous and heterogeneous ice nucleation studies to promote a more uniform and reliable methodology that facilitates the ready intercomparison of ice-nucleating particles measured by DFTs.


2018 ◽  
Author(s):  
Anand Kumar ◽  
Claudia Marcolli ◽  
Thomas Peter

Abstract. Divergent ice nucleation (IN) efficiencies of quartz, an important component of atmospheric mineral dust, have been reported in previous studies. We show here that quartz particles obtain their IN activity from milling and that quartz aged in water loses most of its IN efficiency relative to freshly milled quartz. Also, the quartz surface – much in contrast to that of feldspars – is not prone to ammonia-induced IN enhancement. In detail we investigate the influence of solutes on the IN efficiency of various silica (SiO2) particles (crystalline and amorphous) with special focus on quartz. We performed immersion freezing experiments and relate the reported contradictory behavior to the influence of milling, and to the aging time and conditions since milling. Immersion freezing with silica particles suspended in pure water or aqueous solutions of NH3, (NH4)2SO4, NH4HSO4, Na2SO4 and NaOH, with solute concentrations corresponding to water activities aw = 0.9–1.0, were investigated in emulsified droplets by means of differential scanning calorimetry (DSC) and analyzed in terms of the onset temperature of the heterogeneous freezing signal Thet and the heterogeneously frozen water volume fraction Fhet. Quartz particles, which originate from milling coarse samples, show a strong heterogeneous freezing peak in pure water with Thet = 247–251 K. This IN activity disappears almost completely after aging for 7 months in pure water in a glass vial. During this time quartz slowly grew by incorporating silicic acid leached from the glass vial. Conversely, the synthesized amorphous silica samples show no discernable heterogeneous freezing signal unless they were milled. This implies that defects provide IN activity to silica surfaces, whereas the IN activity of a natural quartz surface is negligible, when it grew under near-equilibrium conditions. For suspensions containing milled quartz and the solutes (NH4)2SO4, NH4HSO4 or Na2SO4, Thet approximately follows Thet(Δawhet) (aw), the heterogeneous freezing onset temperatures that obey Δawhet-criterion, i.e. Thet(Δawhet) (aw) = Tmelt (aw + Δawhet) with Δawhet being a constant offset with respect to the ice melting point curve, similar to homogeneous IN. This water-activity-based description is expected to hold when the mineral surface is not altered by the presence of the solutes. On the other hand, we observe a slight enhancement in Fhet in the presence of these solutes, implying that the compliance with the Δawhet-criterion does not necessarily imply constant Fhet. In contrast to the sulfates, dilute solutions of NH3 or NaOH (molality ≥ 5 × 10−4 mol kg−1) reveal Thet by 3–8 K lower than Thet(Δawhet) (aw), indicating a significant impact on the mineral surface. The lowering of Thet of quartz suspended in dilute NH3 solutions is opposite to the distinct increase in Thet that we found in emulsion freezing experiments with aluminosilicates, namely feldspars, kaolinite, gibbsite and micas. We ascribe this decrease of IN activity to the increased dissolution of quartz under alkaline conditions. The defects that constitute the active sites appear to be more susceptible to dissolution and therefore disappear first on a dissolving surface.


2012 ◽  
Vol 12 (13) ◽  
pp. 5859-5878 ◽  
Author(s):  
V. Pinti ◽  
C. Marcolli ◽  
B. Zobrist ◽  
C. R. Hoyle ◽  
T. Peter

Abstract. Emulsion and bulk freezing experiments were performed to investigate immersion ice nucleation on clay minerals in pure water, using various kaolinites, montmorillonites, illites as well as natural dust from the Hoggar Mountains in the Saharan region. Differential scanning calorimeter measurements were performed on three different kaolinites (KGa-1b, KGa-2 and K-SA), two illites (Illite NX and Illite SE) and four natural and acid-treated montmorillonites (SWy-2, STx-1b, KSF and K-10). The emulsion experiments provide information on the average freezing behaviour characterized by the average nucleation sites. These experiments revealed one to sometimes two distinct heterogeneous freezing peaks, which suggest the presence of a low number of qualitatively distinct average nucleation site classes. We refer to the peak at the lowest temperature as "standard peak" and to the one occurring in only some clay mineral types at higher temperatures as "special peak". Conversely, freezing in bulk samples is not initiated by the average nucleation sites, but by a very low number of "best sites". The kaolinites and montmorillonites showed quite narrow standard peaks with onset temperatures 238 K


2014 ◽  
Vol 14 (17) ◽  
pp. 24273-24309 ◽  
Author(s):  
B. G. Pummer ◽  
C. Budke ◽  
S. Augustin-Bauditz ◽  
D. Niedermeier ◽  
L. Felgitsch ◽  
...  

Abstract. Cloud glaciation is critically important for the global radiation budget (albedo) and for initiation of precipitation. But the freezing of pure water droplets requires cooling to temperatures as low as 235 K. Freezing at higher temperatures requires the presence of an ice nucleator, which is a foreign body in the water that functions as a template for arranging water molecules in an ice-like manner. It is often assumed that these ice nucleators have to be insoluble particles. We put in perspective that also dissolved single macromolecules can induce ice nucleation: they are several nanometers in size, which is also the size range of the necessary critical cluster. As the critical cluster size is temperature-dependent, we see a correlation between the size of such ice nucleating macromolecules and the ice nucleation temperature. Such ice nucleating macromolecules have been already found in many different biological species and are as manifold in their chemistry. Therefore, we additionally compare them to each other, based on a composition of former, recent and yet unpublished studies. Combining these data with calculations from Classical Nucleation Theory, we want to foster a more molecular view of ice nucleation among scientists.


2021 ◽  
Vol 14 (2) ◽  
pp. 1143-1166
Author(s):  
Ottmar Möhler ◽  
Michael Adams ◽  
Larissa Lacher ◽  
Franziska Vogel ◽  
Jens Nadolny ◽  
...  

Abstract. Atmospheric ice-nucleating particles (INPs) play an important role in determining the phase of clouds, which affects their albedo and lifetime. A lack of data on the spatial and temporal variation of INPs around the globe limits our predictive capacity and understanding of clouds containing ice. Automated instrumentation that can robustly measure INP concentrations across the full range of tropospheric temperatures is needed in order to address this knowledge gap. In this study, we demonstrate the functionality and capacity of the new Portable Ice Nucleation Experiment (PINE) to study ice nucleation processes and to measure INP concentrations under conditions pertinent for mixed-phase clouds, with temperatures from about −10 to about −40 ∘C. PINE is a cloud expansion chamber which avoids frost formation on the cold walls and thereby omits frost fragmentation and related background ice signals during the operation. The development, working principle and treatment of data for the PINE instrument is discussed in detail. We present laboratory-based tests where PINE measurements were compared with those from the established AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud chamber. Within experimental uncertainties, PINE agreed with AIDA for homogeneous freezing of pure water droplets and the immersion freezing activity of mineral aerosols. Results from a first field campaign conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) observatory in Oklahoma, USA, from 1 October to 14 November 2019 with the latest PINE design (a commercially available PINE chamber) are also shown, demonstrating PINE's ability to make automated field measurements of INP concentrations at a time resolution of about 8 min with continuous temperature scans for INP measurements between −10 and −30 ∘C. During this field campaign, PINE was continuously operated for 45 d in a fully automated and semi-autonomous way, demonstrating the capability of this new instrument to also be used for longer-term field measurements and INP monitoring activities in observatories.


2021 ◽  
Author(s):  
Nadia Shardt ◽  
Florin Isenrich ◽  
Michael Rösch ◽  
Stavros Stavrakis ◽  
Claudia Marcolli ◽  
...  

<p>To improve the precision of climate models, it is paramount to accurately quantify the probability of ice formation under conditions (e.g., temperatures and cooling rates) that closely resemble those in the atmosphere. In recent years, microfluidic approaches have emerged as a new tool in atmospheric research. Polydimethylsiloxane (PDMS) microfluidic chips have been used to study the ice nucleation behavior of aqueous drops containing ice nucleating particles. However, PDMS readily takes up water, which compromises the stability of droplets for prolonged times. Additionally, careful temperature calibration has been required due to significant temperature gradients that arise between the bottom area of the chip that is cooled and the location of the droplets. In contrast to past work, our generated droplets are stored in fluoropolymer tubing that is impermeable to water and is immersed in an ethanol bath. Such a design has two main advantages: (i) small aqueous droplets are stable in the structure for extended periods of time beyond those possible in PDMS chips; and (ii) immersion in a liquid bath reduces the temperature gradient between droplets and chip-bottom since cooling instead occurs over all exposed surfaces. These benefits impart an ability to study individual droplets with diameters that approach the sizes of cloud droplets over several freeze-thaw cycles. Herein, we present our instrument design (with an automated droplet-freezing image detection algorithm) and report data on the nucleation of ice in pure water droplets and in aqueous suspensions of ice-nucleating particles. This work will be used as the basis for future investigations in atmospheric ice nucleation that aim to better constrain the influence of ice-nucleating particles on cloud optical properties and precipitation formation.</p>


Sign in / Sign up

Export Citation Format

Share Document