scholarly journals 80 yr oscillation of summer rainfall over North China and East Asian Summer Monsoon

2002 ◽  
Vol 29 (14) ◽  
pp. 17-1-17-4 ◽  
Author(s):  
Jinhong Zhu ◽  
Shaowu Wang
2020 ◽  
Vol 33 (3) ◽  
pp. 977-992 ◽  
Author(s):  
Yi Shi ◽  
Zhihong Jiang ◽  
Zhengyu Liu ◽  
Laurent Li

AbstractThe Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) platform is used to simulate Lagrangian trajectories of air parcels in East China during the summer monsoon. The investigation includes four distinct stages of the East Asian summer monsoon (EASM) during its seasonal migration from south to north. Correspondingly, the main water vapor channel migrates from the west Pacific Ocean (PO) for the premonsoon in South China (SC) to the Indian Ocean (IO) for the monsoon in SC and in the Yangtze–Huaihe River basin, and finally back to the PO for the terminal stage of monsoon in North China. Further calculations permit us to determine water vapor source regions and water vapor contribution to precipitation in East China. To a large extent, moisture leading to precipitation does not come from the strongest water vapor pathways. For example, the proportions of trajectories from the IO are larger than 25% all of the time, but moisture contributions to actual precipitation are smaller than 10%. This can be explained by the large amount of water vapor lost in the pathways across moisture-losing areas such as the Indian and Indochina Peninsulas. Local water vapor recycling inside East China (EC) contributes significantly to regional precipitation, with contributions mostly over 30%, although the trajectory proportions from subregions in EC are all under 10%. This contribution rate can even exceed 55% for the terminal stage of the monsoon in North China. Such a result provides important guidance to understand the role of land surface conditions in modulating rainfall in North China.


2014 ◽  
Vol 955-959 ◽  
pp. 3093-3097 ◽  
Author(s):  
Qian Li

Based on the East Asian summer monsoon index and drought/flood grades during 1470–2008, the coupling relationship between them was analyzed. The results show that the East Asian summer monsoon strength index existed over seven periods. There are 1470-1573, 1574-1771, 1574-1827, 1828-1867, 1867-1828, 1895-1921 and 1922-2008. And the East Asian summer monsoon is stronger in period of 1470-1573, 1772-1827, 1827-1894 and 1922-2008. When the East Asian summer monsoon is weaker, North China and South China are prone to partial drought and yangtze-huaihe River Basin is prone to partial flood. When the East Asian summer monsoon is stronger, North China and South China are prone to partial flood and yangtze-huaihe River Basin is prone to partial drought.


2016 ◽  
Vol 29 (15) ◽  
pp. 5431-5446 ◽  
Author(s):  
Jinqiang Chen ◽  
Simona Bordoni

Abstract The early summer regional climate change of the East Asian summer monsoon (EASM) is investigated in the phase 5 of the Coupled Model Intercomparison Project (CMIP5) archive. In the greenhouse gas–forced scenario, reduction of radiative cooling and increase in continental surface temperature occur much more rapidly than changes in sea surface temperatures (SSTs). Without changes in SSTs, the early summer rainfall in the monsoon region decreases (increases) over ocean (land) in most models. On longer time scales, as SSTs increase, rainfall changes are opposite. The total response to atmospheric CO2 forcing and subsequent SST warming is a large (modest) increase in rainfall over ocean (land) in the EASM region. Dynamic changes, in spite of significant contributions from the thermodynamic component, play an important role in setting up the spatial pattern of precipitation changes. Early summer rainfall anomalies over east China are a direct consequence of local land–sea contrast, while changes in the large-scale oceanic rainfall band are closely associated with the displacement of the larger-scale North Pacific subtropical high (NPSH). Ad hoc numerical simulations with the AM2.1 general circulation model show that topography and SST patterns play an important role in early summer rainfall changes in the EASM region.


2008 ◽  
Vol 4 (3) ◽  
pp. 645-666 ◽  
Author(s):  
J. Liu ◽  
B. Wang ◽  
J. Yang

Abstract. The modern instrumental record (1979–2006) is analyzed in an attempt to reveal the dynamical structure and origins of the major modes of interannual variability of East Asian summer monsoon (EASM) and to elucidate their fundamental differences with the major modes of seasonal variability. These differences are instrumental in understanding of the forced (say orbital) and internal (say interannual) modes of variability in EASM. We show that the leading mode of interannual variation, which accounts for about 39% of the total variance, is primarily associated with decaying phases of major El Nino, whereas the second mode, which accounts for 11.3% of the total variance, is associated with the developing phase of El Nino/La Nina. The EASM responds to ENSO in a nonlinear fashion with regard to the developing and decay phases of El Nino. The two modes are determined by El Nino/La Nina forcing and monsoon-warm ocean interaction, or essentially driven by internal feedback processes within the coupled climate system. For this internal mode, the intertropical convergence zone (ITCZ) and subtropical EASM precipitations exhibit an out-of-phase variations; further, the Meiyu in Yangtze River Valley is also out-of-phase with the precipitation in the central North China. In contrast, the slow and fast annual cycles forced by the solar radiation show an in-phase correlation between the ITCZ and subtropical EASM precipitation. Further, the seasonal march of precipitation displays a continental-scale northward advance of a rain band (that tilts in a southwest-northeastward direction) over the entire Indian and East Asian summer monsoon from mid-May toward the end of July. This uniformity in seasonal advance suggests that the position of the northern edge of the summer monsoon or the precipitation over the central North China may be an adequate measure of the monsoon intensity for the forced mode, while the intensity of the internal mode of EASM variability should measured by the intensity of Meiyu. Given the fact that the annual modes share the similar external forcing with orbital variability, the results presented here may help to understand the differences in the EASM variability on the interannual and orbital time scales.


Sign in / Sign up

Export Citation Format

Share Document