scholarly journals The evolution of extreme temperatures in the Central England temperature record

2002 ◽  
Vol 29 (24) ◽  
pp. 16-1-16-4 ◽  
Author(s):  
B. B. Brabson ◽  
J. P. Palutikof
2020 ◽  
Vol 59 (6) ◽  
pp. 1069-1076
Author(s):  
S. C. Chapman ◽  
E. J. Murphy ◽  
D. A. Stainforth ◽  
N. W. Watkins

AbstractAn important impact of climate change on agriculture and the sustainability of ecosystems is the increase of extended warm spells during winter. We apply crossing theory to the central England temperature time series of winter daily maximum temperatures to quantify how increased occurrence of higher temperatures translates into more frequent, longer-lasting, and more intense winter warm spells. We find since the late 1800s an overall two- to threefold increase in the frequency and duration of winter warm spells. A winter warm spell of 5 days in duration with daytime maxima above 13°C has a return period that was often over 5 years but now is consistently below 4 years. Weeklong warm intervals that return on average every 5 years now consistently exceed ~13°C. The observed changes in the temporal pattern of environmental variability will affect the phenology of ecological processes and the structure and functioning of ecosystems.


Author(s):  
Stephen Burt ◽  
Tim Burt

This chapter deals with the growth of Oxford since 1767 and assessment of the potential influence of the expanding urban area on the temperature record from the Radcliffe Observatory, using long-period data from a semi-rural site at Rothamsted (Hertfordshire) and a more recent 3-year comparison with records from nearby Wallingford to assess the extent of, and changes in, Oxford’s urban heat island. The urban heat island effect remains small but is shown to have increased in magnitude in recent decades, and is likely to affect the homogeneity of the Oxford temperature record. In addition, the chapter provides a comparison of the data from the Radcliffe Observatory with that from the Central England Temperature series.


2019 ◽  
pp. 155-161 ◽  
Author(s):  
Ivan Beltran

Environmental temperature has fitness consequences on ectotherm development, ecology and behaviour. Amphibians are especially vulnerable because thermoregulation often trades with appropriate water balance. Although substantial research has evaluated the effect of temperature in amphibian locomotion and physiological limits, there is little information about amphibians living under extreme temperature conditions. Leptodactylus lithonaetes is a frog allegedly specialised to forage and breed on dark granitic outcrops and associated puddles, which reach environmental temperatures well above 40 ˚C. Adults can select thermally favourable microhabitats during the day while tadpoles are constrained to rock puddles and associated temperature fluctuations; we thus established microhabitat temperatures and tested whether the critical thermal maximum (CTmax) of L. lithonaetes is higher in tadpoles compared to adults. In addition, we evaluated the effect of water temperature on locomotor performance of tadpoles. Contrary to our expectations, puddle temperatures were comparable and even lower than those temperatures measured in the microhabitats used by adults in the daytime. Nonetheless, the CTmax was 42.3 ˚C for tadpoles and 39.7 ˚C for adults. Regarding locomotor performance, maximum speed and maximum distance travelled by tadpoles peaked around 34 ˚C, approximately 1 ˚C below the maximum puddle temperatures registered in the puddles. In conclusion, L. lithonaetes tadpoles have a higher CTmax compared to adults, suggesting a longer exposure to extreme temperatures that lead to maintain their physiological performance at high temperatures. We suggest that these conditions are adaptations to face the strong selection forces driven by this granitic habitat.


2020 ◽  
Vol 33 (1) ◽  
pp. 397-404 ◽  
Author(s):  
Nicholas Lewis ◽  
Judith Curry

AbstractCowtan and Jacobs assert that the method used by Lewis and Curry in 2018 (LC18) to estimate the climate system’s transient climate response (TCR) from changes between two time windows is less robust—in particular against sea surface temperature bias correction uncertainty—than a method that uses the entire historical record. We demonstrate that TCR estimated using all data from the temperature record is closely in line with that estimated using the LC18 windows, as is the median TCR estimate using all pairs of individual years. We also show that the median TCR estimate from all pairs of decade-plus-length windows is closely in line with that estimated using the LC18 windows and that incorporating window selection uncertainty would make little difference to total uncertainty in TCR estimation. We find that, when differences in the evolution of forcing are accounted for, the relationship over time between warming in CMIP5 models and observations is consistent with the relationship between CMIP5 TCR and LC18’s TCR estimate but fluctuates as a result of multidecadal internal variability and volcanism. We also show that various other matters raised by Cowtan and Jacobs have negligible implications for TCR estimation in LC18.


Sign in / Sign up

Export Citation Format

Share Document