scholarly journals Radial velocity and doppler spectral width of echoes from field-aligned irregularities localized in the sporadic E region

Author(s):  
Yen-Hsyang Chu
2004 ◽  
Vol 22 (11) ◽  
pp. 3799-3804 ◽  
Author(s):  
C. J. Pan ◽  
P. B. Rao

Abstract. We report on the field-aligned irregularities observed in the low-latitude sporadic E-layer (Es) with the Gadanki (13.5° N, 79.2° E; geomagnetic latitude 6.3° N) VHF radar. The radar was operated intermittently for 15 days during the summer months in 1998 and 1999, for both daytime and nighttime observation. The total observation periods are 161h for the nighttime and 68h for the daytime. The observations were used to study the percentage of occurrence of the E-region echoes for both daytime and nighttime. The statistical characteristics of the mean radial velocity and spectral width are presented for three cases based on the echo occurrence characteristics and the altitude of observations (from 90 to 140km ranges), namely, the lower E-region daytime (90-110km), the lower E-region nighttime (90-105km) and the upper E-region nighttime (105-140km) echoes. The results are compared with that of Piura, a low-latitude station located at about the same geomagnetic latitude, but to the south of the equator. By comparing the behaviors of the lower E-region radar echoes of the summer months between Gadanki and Piura, we find that the lower altitude echoes below about 100km are rarely reported in Piura but commonly seen in Gadanki. Features of the nighttime echoes observed by these two radars are quite similar but daytime FAI echoes are again seldom detected by Piura.


1998 ◽  
Vol 25 (11) ◽  
pp. 1813-1816 ◽  
Author(s):  
Tadahiko Ogawa ◽  
Norihide Sekito ◽  
Kenrou Nozaki ◽  
Mamoru Yamamoto

2017 ◽  
Vol 122 (12) ◽  
pp. 12,517-12,533 ◽  
Author(s):  
J. Moro ◽  
L. C. A. Resende ◽  
C. M. Denardini ◽  
J. Xu ◽  
I. S. Batista ◽  
...  

2022 ◽  
Vol 14 (2) ◽  
pp. 392
Author(s):  
Lei Qiao ◽  
Gang Chen ◽  
Wanlin Gong ◽  
Xuesi Cai ◽  
Erxiao Liu ◽  
...  

The Wuhan Ionospheric Oblique Backscatter Sounding System (WIOBSS) was applied as a bistatic radar to record the ionospheric E-region responses to a solar eclipse on 22 July 2009. The transmitter was located in Wuhan and the receiver was located in Huaian. The receiver observed anomalous echoes with larger Doppler shifts at the farther ranges compared with the echoes reflected by Es. According to the simulated ray propagation paths of the reflected and scattered waves, we considered that the anomalous echoes were scattered by E-region field-aligned irregularities (FAIs). The locations of the FAIs recorded by the WIOBSS were estimated with the International Geomagnetic Reference Field (IGRF) and the observed propagation parameters. These irregularities occurred at around the eclipse maximum and lasted for ~20–40 min. The steep plasma density gradient induced by the fast drop photo ionization under the lunar shadow was beneficial to the occurrence of gradient drift instability to generate the FAIs. They were different from the gravity wave-induced irregularities occurring in the recovery phase of the solar eclipse.


2008 ◽  
Vol 26 (9) ◽  
pp. 2929-2936 ◽  
Author(s):  
K.-I. Oyama ◽  
K. Hibino ◽  
T. Abe ◽  
R. Pfaff ◽  
T. Yokoyama ◽  
...  

Abstract. The electron temperature (Te), electron density (Ne), and two components of the electric field were measured from the height of 90 km to 150 km by one of the sounding rockets launched during the SEEK-2 campaign. The rocket went through sporadic E layer (Es) at the height of 102 km–109 km during ascent and 99 km–108 km during decent, respectively. The energy density of thermal electrons calculated from Ne and Te shows the broad maximum in the height range of 100–110 km, and it decreases towards the lower and higher altitudes, which implies that a heat source exists in the height region of 100 km–110 km. A 3-D picture of Es, that was drawn by using Te, Ne, and the electric field data, corresponded to the computer simulation; the main structure of Es is projected to a higher altitude along the magnetic line of force, thus producing irregular structures of Te, Ne and electric field in higher altitude.


2021 ◽  
Author(s):  
Mani Sivakandan ◽  
Jorge L Chau ◽  
Carlos Martinis ◽  
Yuichi Otsuka ◽  
Jens Mielich ◽  
...  

<p>Northwest to southeast phase fronts with southwestward moving features are commonly observed in the nighttime midlatitude ionosphere during the solstice months at low solar activity. These features are identified as nighttime MSTIDs (medium scale traveling ionospheric disturbances). Initially, they were considered to be a manifestation of neutral atmospheric gravity waves. Later on, investigations showed that the nighttime MSTIDs are electrified in nature and mostly confined to the mid and low latitude ionosphere. Although the overall characteristics of the nighttime MSTIDs are mostly well understood, the causative mechanisms are not well known. Perkins instability mechanism was believed to be the cause of nighttime MSTIDs, however, the growth rate of the instability is too small to explain the perturbations observed. Recently, model simulations and observational studies suggest that coupling between sporadic-E layers and other type of E-region instabilities, and the F region may be relevant to explain the generation of the MSTIDs.</p><p>In the present study simultaneous observation from OI 630 nm all-sky airglow imager, GPS-TEC, ionosonde and Meteor radars, are used to investigate the role of E and F region coupling on the generation of MSTIDs .Nighttime MSTIDs observed on three nights (14 March 2020, 23 March 2020 and 28 May 2020) in the OI 630 nm airglow images over Kuehlungsborn (54°07'N; 11°46'E, 53.79N  mag latitude), Germany, are presented. Simultaneous detrended GPS-TEC measurements also shows presence of MSTIDs on these nights. In addition, simultaneous ionosonde observations over Juliusruh (54°37.7'N 13°22.5'E) show spread-F in the ionograms as well as sporadic-E layer occurrence.  Furthermore, we also investigate the MLT region wind variations during these nights. The role of Es-layers and the interplay between the winds and Es-layers role on the generation of the MSTIDs will be discussed in detail in this presentation.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document