perkins instability
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 1)

H-INDEX

10
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Mani Sivakandan ◽  
Jorge L Chau ◽  
Carlos Martinis ◽  
Yuichi Otsuka ◽  
Jens Mielich ◽  
...  

<p>Northwest to southeast phase fronts with southwestward moving features are commonly observed in the nighttime midlatitude ionosphere during the solstice months at low solar activity. These features are identified as nighttime MSTIDs (medium scale traveling ionospheric disturbances). Initially, they were considered to be a manifestation of neutral atmospheric gravity waves. Later on, investigations showed that the nighttime MSTIDs are electrified in nature and mostly confined to the mid and low latitude ionosphere. Although the overall characteristics of the nighttime MSTIDs are mostly well understood, the causative mechanisms are not well known. Perkins instability mechanism was believed to be the cause of nighttime MSTIDs, however, the growth rate of the instability is too small to explain the perturbations observed. Recently, model simulations and observational studies suggest that coupling between sporadic-E layers and other type of E-region instabilities, and the F region may be relevant to explain the generation of the MSTIDs.</p><p>In the present study simultaneous observation from OI 630 nm all-sky airglow imager, GPS-TEC, ionosonde and Meteor radars, are used to investigate the role of E and F region coupling on the generation of MSTIDs .Nighttime MSTIDs observed on three nights (14 March 2020, 23 March 2020 and 28 May 2020) in the OI 630 nm airglow images over Kuehlungsborn (54°07'N; 11°46'E, 53.79N  mag latitude), Germany, are presented. Simultaneous detrended GPS-TEC measurements also shows presence of MSTIDs on these nights. In addition, simultaneous ionosonde observations over Juliusruh (54°37.7'N 13°22.5'E) show spread-F in the ionograms as well as sporadic-E layer occurrence.  Furthermore, we also investigate the MLT region wind variations during these nights. The role of Es-layers and the interplay between the winds and Es-layers role on the generation of the MSTIDs will be discussed in detail in this presentation.</p><p> </p>


2018 ◽  
Vol 8 ◽  
pp. A27 ◽  
Author(s):  
Krishnendu Sekhar Paul ◽  
Haris Haralambous ◽  
Christina Oikonomou ◽  
Ashik Paul ◽  
Anna Belehaki ◽  
...  

Spread F is an ionospheric phenomenon which has been reported and analyzed extensively over equatorial regions on the basis of the Rayleigh-Taylor (R-T) instability. It has also been investigated over midlatitude regions, mostly over the Southern Hemisphere with its generation attributed to the Perkins instability mechanism. Over midlatitudes it has also been correlated with geomagnetic storms through the excitation of travelling ionospheric disturbances (TIDs) and subsequent F region uplifts. The present study deals with the occurrence rate of nighttime spread F events and their diurnal, seasonal and solar cycle variation observed over three stations in the European longitude sector namely Nicosia (geographic Lat: 35.29 °N, Long: 33.38 °E geographic: geomagnetic Lat: 29.38 °N), Athens (geographic Lat: 37.98 °N, Long: 23.73 °E geographic: geomagnetic Lat: 34.61 °N) and Pruhonice (geographic Lat: 50.05 °N, Long: 14.41 °E geographic: geomagnetic Lat: 47.7 °N) during 2009, 2015 and 2016 encompassing periods of low, medium and high solar activity, respectively. The latitudinal and longitudinal variation of spread F occurrence was examined by considering different instability triggering mechanisms and precursors which past literature identified as critical to the generation of spread F events. The main findings of this investigation is an inverse solar cycle and annual temporal dependence of the spread F occurrence rate and a different dominant spread F type between low and high European midlatitudes.


2016 ◽  
Vol 34 (2) ◽  
pp. 293-301 ◽  
Author(s):  
I. Paulino ◽  
A. F. Medeiros ◽  
S. L. Vadas ◽  
C. M. Wrasse ◽  
H. Takahashi ◽  
...  

Abstract. Periodic wave structures in the thermosphere have been observed at São João do Cariri (geographic coordinates: 36.5° W, 7.4° S; geomagnetic coordinates based on IGRF model to 2015: 35.8° E, 0.48° N) from September 2000 to November 2010 using OI630.0 nm airglow images. During this period, which corresponds to almost one solar cycle, characteristics of 98 waves were studied. Similarities between the characteristics of these events and observations at other places around the world were noted, primarily the spectral parameters. The observed periods were mostly found between 10 and 35 min; horizontal wavelengths ranged from 100 to 200 km, and phase speed from 30 to 180 m s−1. These parameters indicated that some of the waves, presented here, are slightly faster than those observed previously at low and middle latitudes (Indonesia, Carib and Japan), indicating that the characteristics of these waves may change at different places. Most of observed waves have appeared during magnetically quiet nights, and the occurrence of those waves followed the solar activity. Another important characteristic is the quasi-monochromatic periodicity that distinguish them from the single-front medium-scale traveling ionospheric disturbances (MSTIDs) that have been observed previously over the Brazilian region. Moreover, most of the observed waves did not present a phase front parallel to the northeast–southwest direction, which is predicted by the Perkins instability process. It strongly suggests that most of these waves must have had different generation mechanisms from the Perkins instability, which have been pointed out as being a very important mechanism for the generation of MSTIDs in the lower thermosphere.


2011 ◽  
Vol 29 (2) ◽  
pp. 361-366 ◽  
Author(s):  
M. C. Kelley

Abstract. A recent breakthrough experiment by Ogawa et al. (2009) showed that Mesoscale Traveling Ionospheric Disturbances (MSTIDs), a common phenomenon at midlatitudes, originate in the auroral zone as gravity waves. Curiously, however, the latter do not seem to be related to magnetic activity. These atmospheric waves are common at high latitudes (Bristow and Greenwald, 1996; Bristow et al., 1996), and we argue here that, as they propagate to lower latitudes, Joule damping reduces the gravity wave spectrum to waves suffering the weakest damping. The direction of weakest damping corresponds to the direction predicted by the Perkins instability (Perkins, 1973) for nighttime MSTIDs. The daytime features reported by Ogawa et al. (2009) are very likely due to classical gravity wave interaction with the F-region ionosphere.


2008 ◽  
Vol 35 (3) ◽  
Author(s):  
Tatsuhiro Yokoyama ◽  
Yuichi Otsuka ◽  
Tadahiko Ogawa ◽  
Mamoru Yamamoto ◽  
David L. Hysell

2007 ◽  
Vol 25 (7) ◽  
pp. 1579-1601 ◽  
Author(s):  
R. B. Cosgrove

Abstract. The generic equilibrium configuration of the nighttime midlatitude ionosphere consists of an F layer held up against gravity by winds and/or electric fields, and a sporadic E (Es) layer located by a sheared wind field, which experiences the same electric fields as the F layer. This configuration is subject to two large-scale (e.g. >10 km) "layer instabilities": one of the F layer known as the Perkins instability, and another of the Es layer which has been called the Es layer instability. Electric fields on scales larger than (about) 10 km map very efficiently between the Es and F layers, and the two instabilities have a similar geometry, allowing them to interact with one another. As shown through a linear growth rate analysis, the two most important parameters governing the interaction are the relative horizontal velocity between the Es and F layers, and the integrated conductivity ratio ΣH/ΣPF, where ΣH and ΣPF are the field line integrated Hall conductivity of the Es layer, and the field line integrated Pedersen conductivity of the F layer, respectively. For both large and small relative velocities the growth rate was found to be more than double that of the Perkins instability alone, when ΣHΣPF=1.8. However, the characteristic eigenmode varies considerably with relative velocity, and different nonlinear behavior is expected in these two cases. As a follow up to the linear growth rate analysis, we explore in this article the nonlinear evolution of the unstable coupled system subject to a 200 km wavelength initial perturbation of the F layer, using a two-dimensional numerical solution of the two-fluid equations, as a function of relative horizontal velocity and ΣHΣPF. We find that when ΣHΣPF⪝0.5 the Perkins instability is able to control the dynamics and modulate the F layer altitude in 2 to 3 h time. However, the electric fields remain small until the altitude modulation is extremely large, and even then they are not large enough to account for the observations of large midlatitude electric fields. When ΣHΣPF⪞1 the Es layer becomes a major contributor to the F layer dynamics. The Es layer response involves the breaking of a wave, with associated polarization electric fields, which modulate the F layer. Larger electric fields form when the relative velocity between the Es and F layers is large, whereas larger modulations of the F layer altitude occur when the relative velocity is small. In the latter case the F layer modulation grows almost twice as fast (for ΣHΣPF=1) as when no Es layer is present. In the former case the electric fields associated with the Es layer are large enough to explain the observations (~10 mV/m) , but occur over relatively short temporal and spatial scales. In the former case also there is evidence that the F layer structure may present with a southwestward trace velocity induced by Es layer motion.


Sign in / Sign up

Export Citation Format

Share Document