Investigation on the role of E-F region coupling processes on the generation of nighttime MSTIDs: Case studies over northern Germany

Author(s):  
Mani Sivakandan ◽  
Jorge L Chau ◽  
Carlos Martinis ◽  
Yuichi Otsuka ◽  
Jens Mielich ◽  
...  

<p>Northwest to southeast phase fronts with southwestward moving features are commonly observed in the nighttime midlatitude ionosphere during the solstice months at low solar activity. These features are identified as nighttime MSTIDs (medium scale traveling ionospheric disturbances). Initially, they were considered to be a manifestation of neutral atmospheric gravity waves. Later on, investigations showed that the nighttime MSTIDs are electrified in nature and mostly confined to the mid and low latitude ionosphere. Although the overall characteristics of the nighttime MSTIDs are mostly well understood, the causative mechanisms are not well known. Perkins instability mechanism was believed to be the cause of nighttime MSTIDs, however, the growth rate of the instability is too small to explain the perturbations observed. Recently, model simulations and observational studies suggest that coupling between sporadic-E layers and other type of E-region instabilities, and the F region may be relevant to explain the generation of the MSTIDs.</p><p>In the present study simultaneous observation from OI 630 nm all-sky airglow imager, GPS-TEC, ionosonde and Meteor radars, are used to investigate the role of E and F region coupling on the generation of MSTIDs .Nighttime MSTIDs observed on three nights (14 March 2020, 23 March 2020 and 28 May 2020) in the OI 630 nm airglow images over Kuehlungsborn (54°07'N; 11°46'E, 53.79N  mag latitude), Germany, are presented. Simultaneous detrended GPS-TEC measurements also shows presence of MSTIDs on these nights. In addition, simultaneous ionosonde observations over Juliusruh (54°37.7'N 13°22.5'E) show spread-F in the ionograms as well as sporadic-E layer occurrence.  Furthermore, we also investigate the MLT region wind variations during these nights. The role of Es-layers and the interplay between the winds and Es-layers role on the generation of the MSTIDs will be discussed in detail in this presentation.</p><p> </p>

2004 ◽  
Vol 22 (9) ◽  
pp. 3145-3153 ◽  
Author(s):  
B. W. Reinisch ◽  
M. Abdu ◽  
I. Batista ◽  
G. S. Sales ◽  
G. Khmyrov ◽  
...  

Abstract. Directional ionogram and F-region drift observations were conducted at seven digisonde stations in South America during the COPEX campaign from October to December 2002. Five stations in Brazil, one in Argentina, and one in Peru, monitored the ionosphere across the continent to study the onset and development of F-region density depletions that cause equatorial spread F (ESF). New ionosonde techniques quantitatively describe the prereversal uplifting of the F layer at the magnetic equator and the eastward motion of the depletions over the stations. Three of the Brazilian stations were located along a field line with a 350-km apex over the equator to investigate the relation of the occurrence of ESF and the presence of sporadic E-layers at the two E-region intersections of the field line. No simple correlation was found.


2005 ◽  
Vol 23 (6) ◽  
pp. 2095-2105 ◽  
Author(s):  
S. Shalimov ◽  
C. Haldoupis

Abstract. This paper investigates the role of neutral winds in the generation of relatively large polarization electric fields across patchy sporadic-E layers, which then map upward to the F region, to create conditions for medium-scale spread-F. The calculations are based on an analytical model that uses the current continuity equation and field-aligned current closures to the F region in order to describe quantitatively a Hall polarization process inside sporadic-E plasma patches during nighttime. In applying this model we use experimentally known values for E and F region, conductances, the ambient electric fields and prevailing neutral winds, in order to estimate the polarization fields that build up inside sporadic-E. It is found that the relatively strong west-southwest neutral winds during summer nighttime can provide the free energy for the generation of sizable polarization electric fields, which have comparable eastward and north-upward components and reach values of several mV/m. Given that the sporadic-E patches have sizes from a few to several tens of kilometers, the polarization fields can map easily to the F region bottomside where they impact ExB plasma uplifts and westward bulk motions, in line with key observational properties of medium-scale spread-F. However, the present simple model needs further development to also include wind forcing of the F region plasma and possible polarization processes inside spread-F. Keywords. Ionosphere (Electric fields and currents; Ionospheric irregularities; Mid-latitude ionosphere)


2016 ◽  
Vol 34 (11) ◽  
pp. 927-941 ◽  
Author(s):  
David L. Hysell ◽  
Miguel Larsen ◽  
Michael Sulzer

Abstract. Radar observations of the E- and F-region ionosphere from the Arecibo Observatory made during moderately disturbed conditions are presented. The observations indicate the presence of patchy sporadic E (Es) layers, medium-scale traveling ionospheric disturbances (MSTIDs), and depletion plumes associated with spread F conditions. New analysis techniques are applied to the dataset to infer the vector plasma drifts in the F region as well as vector neutral wind and temperature profiles in the E region. Instability mechanisms in both regions are evaluated. The mesosphere–lower-thermosphere (MLT) region is found to meet the conditions for neutral dynamic instability in the vicinity of the patchy Es layers even though the wind shear was relatively modest. An inversion in the MLT temperature profile contributed significantly to instability in the vicinity of one patchy layer. Of particular interest is the evidence for the conditions required for neutral convective instability in the lower-thermosphere region (which is usually associated with highly stable conditions) due to the rapid increase in temperature with altitude. A localized F-region plasma density enhancement associated with a sudden ascent up the magnetic field is shown to create the conditions necessary for convective plasma instability leading to the depletion plume and spread F. The growth time for the instability is short compared to the one described by [Perkins(1973)]. This instability does not offer a simple analytic solution but is clearly present in numerical simulations. The instability mode has not been described previously but appears to be more viable than the various mechanisms that have been suggested previously as an explanation for the occurrence of midlatitude spread F.


2007 ◽  
Vol 25 (8) ◽  
pp. 1801-1814 ◽  
Author(s):  
R. S. Dhillon ◽  
T. R. Robinson ◽  
T. K. Yeoman

Abstract. The Space Plasma Exploration by Active Radar (SPEAR) facility has successfully operated in the high-power heater and low-power radar modes and has returned its first results. The high-power results include observations of SPEAR-induced ion and plasma line spectral enhancements recorded by the EISCAT Svalbard UHF incoherent scatter radar system (ESR), which is collocated with SPEAR. These SPEAR-enhanced spectra possess features that are consistent with excitation of both the purely growing mode and the parametric decay instability. In this paper, we present observations of upper and lower E-region SPEAR-induced ion and plasma line enhancements, together with F-region spectral enhancements, which indicate excitation of both instabilities and which are consistent with previous theoretical treatments of instability excitation in sporadic E-layers. In agreement with previous observations, spectra from the lower E-region have the single-peaked form characteristic of collisional plasma. Our observations of the SPEAR-enhanced E-region spectra suggest the presence of variable drifting regions of patchy overdense plasma, which is a finding also consistent with previous results.


2006 ◽  
Vol 24 (5) ◽  
pp. 1411-1418 ◽  
Author(s):  
S. Fukao ◽  
T. Yokoyama ◽  
T. Tayama ◽  
M. Yamamoto ◽  
T. Maruyama ◽  
...  

Abstract. The zonal structure of radar backscatter plumes associated with Equatorial Spread F (ESF), probably modulated by atmospheric gravity waves, has been investigated with the Equatorial Atmosphere Radar (EAR) in West Sumatra, Indonesia (0.20° S, 100.32° E; dip latitude 10.1° S) and the FM-CW ionospheric sounders on the same magnetic meridian as the EAR. The occurrence locations and zonal distances of the ESF plumes were determined with multi-beam observations with the EAR. The ESF plumes drifted eastward while keeping distances of several hundred to a thousand kilometers. Comparing the occurrence of the plumes and the F-layer uplift measured by the FM-CW sounders, plumes were initiated within the scanned area around sunset only, when the F-layer altitude rapidly increased. Therefore, the PreReversal Enhancement (PRE) is considered as having a zonal variation with the scales mentioned above, and this variation causes day-to-day variability, which has been studied for a long time. Modulation of the underlying E-region conductivity by gravity waves, which causes inhomogeneous sporadic-E layers, for example, is a likely mechanism to determine the scale of the PRE.


2005 ◽  
Vol 23 (4) ◽  
pp. 1191-1197
Author(s):  
M. Voiculescu ◽  
M. Ignat

Abstract. A seasonally dependent total neutral wind model obtained from experimental data is used to evaluate the diurnal variation of the vertical ion velocity in the E-region at a high-latitude location (Tromsø), for each season, in the presence of an electric field with a typical diurnal variation for quiet auroral days. The diurnal variation and spatial locations of the vertical convergence of ions are analyzed and the effect of the total wind on the occurrence of sporadic E-layers is inferred. The results show that the structure of the wind is an important factor in controlling the vertical velocities of ions, favoring or hindering the sporadic E-layer formation. The ion convergence conditions are improved when the permanent wind is removed, which suggests that sporadic E-layers occur when the mean wind has small values, thus allowing the electric field and/or the semidiurnal tide to control the ion dynamics. We conclude that for quiet days the formation of the sporadic layers is initiated by the electric field, while their evolution and dynamics is controlled by the wind. We also find that the seasonal variation of the Es layers cannot be related to the seasonally dependent wind shear. Although we focus on sporadic E-layers, our results can be used in the analysis of other processes involving the vertical dynamics of ions in the E-region at high latitudes.


2019 ◽  
Vol 128 (5) ◽  
Author(s):  
O A Oladipo ◽  
J O Adeniyi ◽  
I A Adimula ◽  
A O Olawepo ◽  
A Olowookere ◽  
...  

1997 ◽  
Vol 15 (7) ◽  
pp. 908-917 ◽  
Author(s):  
C. Haldoupis ◽  
D. T. Farley ◽  
K. Schlegel

Abstract. This paper presents more data on the properties of type-1 irregularities in the nighttime mid-latitude E-region ionosphere. The measurements were made with a 50-MHz Doppler radar system operating in Crete, Greece. The type-1 echoes last from several seconds to a few minutes and are characterized by narrow Doppler spectra with peaks corresponding to wave phase velocities of 250–350 m/s. The average velocity of 285 m/s is about 20% lower than nominal E-region ion-acoustic speeds, probably because of the presence of heavy metallic ions in the sporadic-E-layers that appear to be associated with the mid-latitude plasma instabilities. Sometimes the type-1 echoes are combined with a broad spectrum of type-2 echoes; at other times they dominate the spectrum or may appear in the absence of any type-2 spectral component. We believe these echoes are due to the modified two-stream plasma instability driven by a polarization electric field that must be larger than 10 mV/m. This field is similar in nature to the equatorial electrojet polarization field and can arise when patchy nighttime sporadic-E-layers have the right geometry.


2010 ◽  
Vol 10 (6) ◽  
pp. 1197-1208 ◽  
Author(s):  
P. Nenovski ◽  
Ch. Spassov ◽  
M. Pezzopane ◽  
U. Villante ◽  
M. Vellante ◽  
...  

Abstract. Ionograms from Rome (41.8N, 12.5E) and Sofia (42.4N, 23.2E) ionospheric stations during earthquake (EQ) activity with magnitude (M) between 5 and 6 in Central Italy are analyzed. It is found that several ionospheric disturbances occur in the intermediate E-F region before the EQ shock. In fact, besides sporadic E (Es) layer development (of type h) of short duration (transients), fmin increase, trace gaps near the critical frequencies, and E region trace disappearance are also observed within one to three hours before the EQ shock. Before the EQ shocks we find that the F2 region parameters are practically undisturbed. The only exception is the so-called fork trace that appears mostly near the critical frequency of the F2 region. Acoustic gravity waves (AGW) are suggested as one of the possible sources of transients observed in the ionosphere before the EQ shock.


Nature ◽  
1959 ◽  
Vol 183 (4672) ◽  
pp. 1382-1383 ◽  
Author(s):  
D. F. MARTYN
Keyword(s):  
Spread F ◽  
E Region ◽  

Sign in / Sign up

Export Citation Format

Share Document