scholarly journals Climate change scenarios for seasonal precipitation in South America from IPCC-AR4 models

2006 ◽  
Vol 33 (13) ◽  
Author(s):  
Carolina Vera ◽  
Gabriel Silvestri ◽  
Brant Liebmann ◽  
Paula González
Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 684
Author(s):  
Yang Liu ◽  
Juan Shi

Climate change is predicted to alter the geographic distribution of a wide variety of taxa, including insects. Icerya aegyptiaca (Douglas) and I. purchasi Maskell are two polyphagous and invasive pests in the genus Icerya Signoret (Hemiptera: Monophlebidae) and cause serious damage to many landscape and economic trees. However, the global habitats suitable for these two Icerya species are unclear. The purpose of this study is to determine the potentially suitable habitats of these two species, then to provide scientific management strategies. Using MaxEnt software, the potential risk maps of I. aegyptiaca and I. purchasi were created based on their occurrence data under different climatic conditions and topology factors. The results suggested that under current climate conditions, the potentially habitable area of I. aegyptiaca would be much larger than the current distribution and there would be small changes for I. purchasi. In the future climate change scenarios, the suitable habitats of these two insect species will display an increasing trend. Africa, South America and Asia would be more suitable for I. aegyptiaca. South America, Asia and Europe would be more suitable for I. purchasi. Moreover, most of the highly habitat suitability areas of I. aegyptiaca will become concentrated in Southern Asia. The results also suggested that “min temperature of coldest month” was the most important environmental factor affecting the prediction models of these two insects. This research provides a theoretical reference framework for developing policies to manage and control these two invasive pests of the genus Icerya.


1999 ◽  
Vol 12 (1) ◽  
pp. 258-272 ◽  
Author(s):  
Aristita Busuioc ◽  
Hans von Storch ◽  
Reiner Schnur

Abstract Empirical downscaling procedures relate large-scale atmospheric features with local features such as station rainfall in order to facilitate local scenarios of climate change. The purpose of the present paper is twofold: first, a downscaling technique is used as a diagnostic tool to verify the performance of climate models on the regional scale; second, a technique is proposed for verifying the validity of empirical downscaling procedures in climate change applications. The case considered is regional seasonal precipitation in Romania. The downscaling model is a regression based on canonical correlation analysis between observed station precipitation and European-scale sea level pressure (SLP). The climate models considered here are the T21 and T42 versions of the Hamburg ECHAM3 atmospheric GCM run in “time-slice” mode. The climate change scenario refers to the expected time of doubled carbon dioxide concentrations around the year 2050. The downscaling model is skillful for all seasons except spring. The general features of the large-scale SLP variability are reproduced fairly well by both GCMs in all seasons. The climate models reproduce the empirically determined precipitation–SLP link in winter, whereas the observed link is only partially captured for the other seasons. Thus, these models may be considered skillful with respect to regional precipitation during winter, and partially during the other seasons. Generally, applications of statistical downscaling to climate change scenarios have been based on the assumption that the empirical link between the large-scale and regional parameters remains valid under a changed climate. In this study, a rationale is proposed for this assumption by showing the consistency of the 2 × CO2 GCM scenarios in winter, derived directly from the gridpoint data, with the regional scenarios obtained through empirical downscaling. Since the skill of the GCMs in regional terms is already established, it is concluded that the downscaling technique is adequate for describing climatically changing regional and local conditions, at least for precipitation in Romania during winter.


2019 ◽  
Vol 103 ◽  
pp. 70-89 ◽  
Author(s):  
Facundo Schivo ◽  
Valeria Bauni ◽  
Pamela Krug ◽  
Rubén Darío Quintana

2020 ◽  
Author(s):  
Natália Machado Crespo ◽  
Rosmeri Porfírio da Rocha ◽  
Eduardo Marcos de Jesus

<p>Cyclones developing over and at the eastern coast of South America impact extreme events over the region. Understanding the present climate is crucial to assess future extremes tendencies, which are important for engineering constructions over the southeast Brazil basin. To evaluate these systems in climate change scenarios it is important to study their preferred region of formation and trajectories in the present climate. Therefore, in this study we tracked cyclones in a period from 1979 to 2018 (present climate) using different reanalyses dataset (CFSR, ERA-Interim and ERA5), pointing out the main cyclogenetic regions affecting South America and discussing the main differences between the different dataset. As a preliminary result, the cyclone tracking shows a higher number of systems in CFSR than in ERA-Interim, which would be explained by the finer resolution of CFSR.  Annually, this difference is about 6%, and seasonally, the difference is smaller in summer (3.5%) and similar (~7%) for the other seasons. The reanalyses identify basically the same four cyclogenetic regions, however, there are differences in the density center position. Other features as lifetime, intensity, traveled distance, and wind extremes associated with the cyclones will be also discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document