scholarly journals Sea surface temperatures of the western Arabian Sea during the last deglaciation

2007 ◽  
Vol 22 (2) ◽  
Author(s):  
M. H. Saher ◽  
S. J. A. Jung ◽  
H. Elderfield ◽  
M. J. Greaves ◽  
D. Kroon
2013 ◽  
Vol 28 (4) ◽  
pp. 619-632 ◽  
Author(s):  
Yiming V. Wang ◽  
Guillaume Leduc ◽  
Marcus Regenberg ◽  
Nils Andersen ◽  
Thomas Larsen ◽  
...  

2000 ◽  
Vol 54 (1) ◽  
pp. 72-80 ◽  
Author(s):  
Ning Shi ◽  
Lydie M. Dupont ◽  
Hans-Jürgen Beug ◽  
Ralph Schneider

Dinoflagellate cyst and pollen records from marine sediments off the southwestern African coast reveal three major aridification periods since the last glaciation and an environmental correlation between land and sea. Abundant pollen of desert, semi-desert, and temperate plants 21,000–17,500 cal yr B.P. show arid and cold conditions in southwestern Africa that correspond to low sea surface temperatures and enhanced upwelling shown by dinoflagellate cysts. Occurrence of Restionaceae in the pollen record suggests northward movement of the winter-rain regime that influenced the study area during the last glacial maximum. Decline of Asteroideae, Restionaceae, and Ericaceae in the pollen record shows that temperate vegetation migrated out of the study area about 17,500 cal yr B.P., probably because of warming during the last deglaciation. The warming in southwestern Africa was associated with weakened upwelling and increased sea surface temperatures, 2000–2800 years earlier than in the Northern Hemisphere. Aridification 14,300–12,600 cal yr B.P. is characterized by a prominent increase of desert and semi-desert pollen without the return of temperate vegetation. This aridification corresponds to enhanced upwelling off Namibia and cooler temperatures in Antarctica, and it might have been influenced by oceanic thermohaline circulation. Aridification 11,000–8900 cal yr B.P. is out of phase with the northern African climate. Reduction of the water vapor supply in southwestern Africa at that time may be related to northward excursions of the Intertropical Convergence Zone.


1995 ◽  
Vol 43 (3) ◽  
pp. 355-361 ◽  
Author(s):  
Kay-Christian Emeis ◽  
David M. Anderson ◽  
Heidi Doose ◽  
Dick Kroon ◽  
Detlef Schulz-Bull

AbstractArabian Sea sediments record changes in the upwelling system off Arabia, which is driven by the monsoon circulation system over the NW Indian Ocean. In accordance with climate models, and differing from other large upwelling areas of the tropical ocean, a 500,000-yr record of productivity at ODP Site 723 shows consistently stronger upwelling during interglaciations than during glaciations. Sea-surface temperatures (SSTs) reconstructed from the alkenone unsaturation index (UK′37) are high (up to 27°C) during interglaciations and low (22-24°C) during glaciations, indicating a glacial-interglacial temperature change of >3°C in spite of the dampening effect of enhanced or weakened upwelling. The increased productivity is attributed to stronger monsoon winds during interglacial times relative to glacial times, whereas the difference in SSTs must be unrelated to upwelling and to the summer monsoon intensity. The winter (NE) monsoon was more effective in cooling the Arabian Sea during glaciations then it is now.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1870
Author(s):  
Matteo Gentilucci ◽  
Abdelraouf A. Moustafa ◽  
Fagr Kh. Abdel-Gawad ◽  
Samira R. Mansour ◽  
Maria Rosaria Coppola ◽  
...  

This paper characterizes non-indigenous fish species (NIS) and analyses both atmospheric and sea surface temperatures for the Mediterranean coast of Egypt from 1991 to 2020, in relation to previous reports in the same areas. Taxonomical characterization depicts 47 NIS from the Suez Canal (Lessepsian/alien) and 5 from the Atlantic provenance. GenBank accession number of the NIS mitochondrial gene, cytochrome oxidase 1, reproductive and commercial biodata, and a schematic Inkscape drawing for the most harmful Lessepsian species were reported. For sea surface temperatures (SST), an increase of 1.2 °C to 1.6 °C was observed using GIS software. The lack of linear correlation between annual air temperature and annual SST at the same detection points (Pearson r) could suggest a difference in submarine currents, whereas the Pettitt homogeneity test highlights a temperature breakpoint in 2005–2006 that may have favoured the settlement of non-indigenous fauna in the coastal sites of Damiette, El Arish, El Hammam, Alexandria, El Alamain, and Mersa Matruh, while there seems to be a breakpoint present in 2001 for El Sallum. This assessment of climate trends is in good agreement with the previous sightings of non-native fish species. New insights into the assessment of Egyptian coastal climate change are discussed.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Niels J. de Winter ◽  
Inigo A. Müller ◽  
Ilja J. Kocken ◽  
Nicolas Thibault ◽  
Clemens V. Ullmann ◽  
...  

AbstractSeasonal variability in sea surface temperatures plays a fundamental role in climate dynamics and species distribution. Seasonal bias can also severely compromise the accuracy of mean annual temperature reconstructions. It is therefore essential to better understand seasonal variability in climates of the past. Many reconstructions of climate in deep time neglect this issue and rely on controversial assumptions, such as estimates of sea water oxygen isotope composition. Here we present absolute seasonal temperature reconstructions based on clumped isotope measurements in bivalve shells which, critically, do not rely on these assumptions. We reconstruct highly precise monthly sea surface temperatures at around 50 °N latitude from individual oyster and rudist shells of the Campanian greenhouse period about 78 million years ago, when the seasonal range at 50 °N comprised 15 to 27 °C. In agreement with fully coupled climate model simulations, we find that greenhouse climates outside the tropics were warmer and more seasonal than previously thought. We conclude that seasonal bias and assumptions about seawater composition can distort temperature reconstructions and our understanding of past greenhouse climates.


2018 ◽  
Vol 14 (6) ◽  
pp. 901-922 ◽  
Author(s):  
Mari F. Jensen ◽  
Aleksi Nummelin ◽  
Søren B. Nielsen ◽  
Henrik Sadatzki ◽  
Evangeline Sessford ◽  
...  

Abstract. Here, we establish a spatiotemporal evolution of the sea-surface temperatures in the North Atlantic over Dansgaard–Oeschger (DO) events 5–8 (approximately 30–40 kyr) using the proxy surrogate reconstruction method. Proxy data suggest a large variability in North Atlantic sea-surface temperatures during the DO events of the last glacial period. However, proxy data availability is limited and cannot provide a full spatial picture of the oceanic changes. Therefore, we combine fully coupled, general circulation model simulations with planktic foraminifera based sea-surface temperature reconstructions to obtain a broader spatial picture of the ocean state during DO events 5–8. The resulting spatial sea-surface temperature patterns agree over a number of different general circulation models and simulations. We find that sea-surface temperature variability over the DO events is characterized by colder conditions in the subpolar North Atlantic during stadials than during interstadials, and the variability is linked to changes in the Atlantic Meridional Overturning circulation and in the sea-ice cover. Forced simulations are needed to capture the strength of the temperature variability and to reconstruct the variability in other climatic records not directly linked to the sea-surface temperature reconstructions. This is the first time the proxy surrogate reconstruction method has been applied to oceanic variability during MIS3. Our results remain robust, even when age uncertainties of proxy data, the number of available temperature reconstructions, and different climate models are considered. However, we also highlight shortcomings of the methodology that should be addressed in future implementations.


Sign in / Sign up

Export Citation Format

Share Document