scholarly journals Spatial variability of the direct radiative forcing of biomass burning aerosols and the effects of land use change in Amazonia

2013 ◽  
Vol 13 (3) ◽  
pp. 1261-1275 ◽  
Author(s):  
E. T. Sena ◽  
P. Artaxo ◽  
A. L. Correia

Abstract. This paper addresses the Amazonian shortwave radiative budget over cloud-free conditions after considering three aspects of deforestation: (i) the emission of aerosols from biomass burning due to forest fires; (ii) changes in surface albedo after deforestation; and (iii) modifications in the column water vapour amount over deforested areas. Simultaneous Clouds and the Earth's Radiant Energy System (CERES) shortwave fluxes and aerosol optical depth (AOD) retrievals from the Moderate Resolution Imaging SpectroRadiometer (MODIS) were analysed during the peak of the biomass burning seasons (August and September) from 2000 to 2009. A discrete-ordinate radiative transfer (DISORT) code was used to extend instantaneous remote sensing radiative forcing assessments into 24-h averages. The mean direct radiative forcing of aerosols at the top of the atmosphere (TOA) during the biomass burning season for the 10-yr studied period was −5.6 ± 1.7 W m−2. Furthermore, the spatial distribution of the direct radiative forcing of aerosols over Amazonia was obtained for the biomass burning season of each year. It was observed that for high AOD (larger than 1 at 550 nm) the maximum daily direct aerosol radiative forcing at the TOA may be as high as −20 W m−2 locally. The surface reflectance plays a major role in the aerosol direct radiative effect. The study of the effects of biomass burning aerosols over different surface types shows that the direct radiative forcing is systematically more negative over forest than over savannah-like covered areas. Values of −15.7 ± 2.4 W m−2τ550 nm and −9.3 ± 1.7 W m−2τ550 nm were calculated for the mean daily aerosol forcing efficiencies over forest and savannah-like vegetation respectively. The overall mean annual land use change radiative forcing due to deforestation over the state of Rondônia, Brazil, was determined as −7.3 ± 0.9 W m−2. Biomass burning aerosols impact the radiative budget for approximately two months per year, whereas the surface albedo impact is observed throughout the year. Because of this difference, the estimated impact in the Amazonian annual radiative budget due to surface albedo-change is approximately 6 times higher than the impact due to aerosol emissions. The influence of atmospheric water vapour content in the radiative budget was also studied using AERONET column water vapour. It was observed that column water vapour is on average smaller by about 0.35 cm (around 10% of the total column water vapour) over deforested areas compared to forested areas. Our results indicate that this drying contributes to an increase in the shortwave radiative forcing, which varies from 0.4 W m−2 to 1.2 W m−2 depending on the column water vapour content before deforestation. The large radiative forcing values presented in this study point out that deforestation could have strong implications in convection, cloud development and the ratio of direct to diffuse radiation, which impacts carbon uptake by the forest.

2012 ◽  
Vol 12 (6) ◽  
pp. 14837-14874 ◽  
Author(s):  
E. T. Sena ◽  
P. Artaxo ◽  
A. L. Correia

Abstract. This paper addresses the Amazonian radiative budget after considering three aspects of deforestation: (i) the emission of aerosols from biomass burning due to forest fires; (ii) changes in surface albedo after deforestation and (iii) modifications in the column water vapour amount over deforested areas. Simultaneous Clouds and the Earth's Radiant Energy System (CERES) shortwave fluxes and aerosol optical depth (AOD) retrievals from the Moderate Resolution Imaging SpectroRadiometer (MODIS) were analysed during the peak of the biomass burning seasons (August and September) from 2000 to 2009. A discrete-ordinate radiative transfer (DISORT) code was used to extend instantaneous remote sensing radiative forcing assessments into 24-h averages. The mean direct radiative forcing of aerosols at the top of the atmosphere (TOA) during the biomass burning season for the 10-yr studied period was −5.6 ± 1.7 W m−2. Furthermore, the spatial distribution of the direct radiative forcing of aerosols over Amazon was obtained for the biomass burning season of each year. It was observed that for high AOD (larger than 1 at 550 nm) the imbalance in the radiative forcing at the TOA may be as high as −20 W m−2 locally. The surface reflectance plays a major role in the aerosol direct radiative effect. The study of the effects of biomass burning aerosols over different surface types shows that the direct radiative forcing is systematically more negative over forest than over savannah-like covered areas. Values of −15.7 ± 2.4 W m−2/τ550 nm and −9.3 ± 1.7 W m−2/τ550 nm were calculated for the mean daily aerosol forcing efficiencies over forest and savannah-like vegetation respectively. The overall mean annual albedo-change radiative forcing due to deforestation over the state of Rondônia, Brazil, was determined as −7.3 ± 0.9 W m−2. Biomass burning aerosols impact the radiative budget for approximately two months per year, whereas the surface albedo impact is observed throughout the year. Because of this difference, the estimated impact in the Amazonian annual radiative budget due to surface albedo-change is approximately 6 times higher than the impact due to aerosol emissions. The influence of atmospheric water vapour content in the radiative budget was also studied using AERONET column water vapour. It was observed that column water vapour is in average smaller by about 0.35 cm over deforested areas compared to forested areas. Our results indicate that this drying impact contributes to an increase in the shortwave radiative effect that varies from 0.4 W m−2 to 1.2 W m−2, depending on the column water vapour content before deforestation. The large radiative forcing values presented in this study point out that deforestation has strong implications in convection, cloud development and photosynthesis rate over the Amazon region.


2018 ◽  
Vol 18 (12) ◽  
pp. 8829-8848 ◽  
Author(s):  
Justyna Lisok ◽  
Anna Rozwadowska ◽  
Jesper G. Pedersen ◽  
Krzysztof M. Markowicz ◽  
Christoph Ritter ◽  
...  

Abstract. The aim of the presented study was to investigate the impact on the radiation budget of a biomass-burning plume, transported from Alaska to the High Arctic region of Ny-Ålesund, Svalbard, in early July 2015. Since the mean aerosol optical depth increased by the factor of 10 above the average summer background values, this large aerosol load event is considered particularly exceptional in the last 25 years. In situ data with hygroscopic growth equations, as well as remote sensing measurements as inputs to radiative transfer models, were used, in order to estimate biases associated with (i) hygroscopicity, (ii) variability of single-scattering albedo profiles, and (iii) plane-parallel closure of the modelled atmosphere. A chemical weather model with satellite-derived biomass-burning emissions was applied to interpret the transport and transformation pathways. The provided MODTRAN radiative transfer model (RTM) simulations for the smoke event (14:00 9 July–11:30 11 July) resulted in a mean aerosol direct radiative forcing at the levels of −78.9 and −47.0 W m−2 at the surface and at the top of the atmosphere, respectively, for the mean value of aerosol optical depth equal to 0.64 at 550 nm. This corresponded to the average clear-sky direct radiative forcing of −43.3 W m−2, estimated by radiometer and model simulations at the surface. Ultimately, uncertainty associated with the plane-parallel atmosphere approximation altered results by about 2 W m−2. Furthermore, model-derived aerosol direct radiative forcing efficiency reached on average −126 W m-2/τ550 and −71 W m-2/τ550 at the surface and at the top of the atmosphere, respectively. The heating rate, estimated at up to 1.8 K day−1 inside the biomass-burning plume, implied vertical mixing with turbulent kinetic energy of 0.3 m2 s−2.


2017 ◽  
Author(s):  
Justyna Lisok ◽  
Anna Rozwadowska ◽  
Jesper G. Pedersen ◽  
Krzysztof M. Markowicz ◽  
Christoph Ritter ◽  
...  

Abstract. The aim of the presented study was to investigate the impact on the radiation budget of biomass burning smoke plume transported from Alaska to high Arctic region (Ny-Alesund, Svalbard) in early July 2015. This high aerosol load event is considered exceptional in the last 25 years with mean aerosol optical depth increased by the factor of 10 in comparison to the average summer background values. We utilised in-situ data with hygroscopic growth equations as well as remote sensing measurements as inputs to radiative transfer models with an objective to estimate biases associated with (i) hygroscopicity, (ii) variability of ω profiles and (iii) plane-parallel closure of the modelled atmosphere. A chemical weather model with satellite-derived biomass burning emissions was used to interpret the transport and transformations pathways. Provided MODTRAN simulations resulted in the mean aerosol direct radiative forcing on the level of −78.9 W m−2 and −47.0 W m−2 at the surface and the top of the atmosphere respectively for the mean value of aerosol optical depth equal to 0.64 at 550 nm. It corresponded to the average clear-sky direct radiative forcing of −43.3 W m−2 estimated by radiometers and model simulations. Furthermore, model-derived aerosol direct radiative forcing efficiency reached on average −126 W m−2 / τ550 and −71 W m−2 / τ550 at the surface and at the top of the atmosphere. Estimated heating rate up to 1.8 K day−1 inside the BB plume implied vertical mixing with the turbulent kinetic energy of 0.3 m2 s−2. Ultimately, uncertainty connected with the plane-parallel atmosphere approximation altered results by about 2 W m−2.


2015 ◽  
Vol 15 (10) ◽  
pp. 5471-5483 ◽  
Author(s):  
E. T. Sena ◽  
P. Artaxo

Abstract. A new methodology was developed for obtaining daily retrievals of the direct radiative forcing of aerosols (24h-DARF) at the top of the atmosphere (TOA) using satellite remote sensing. Simultaneous CERES (Clouds and Earth's Radiant Energy System) shortwave flux at the top of the atmosphere and MODIS (Moderate Resolution Spectroradiometer) aerosol optical depth (AOD) retrievals were used. To analyse the impact of forest smoke on the radiation balance, this methodology was applied over the Amazonia during the peak of the biomass burning season from 2000 to 2009. To assess the spatial distribution of the DARF, background smoke-free scenes were selected. The fluxes at the TOA under clean conditions (Fcl) were estimated as a function of the illumination geometry (θ0) for each 0.5° × 0.5° grid cell. The instantaneous DARF was obtained as the difference between the clean (Fcl (θ0)) and the polluted flux at the TOA measured by CERES in each cell (Fpol (θ0)). The radiative transfer code SBDART (Santa Barbara DISORT Radiative Transfer model) was used to expand instantaneous DARFs to 24 h averages. This new methodology was applied to assess the DARF both at high temporal resolution and over a large area in Amazonia. The spatial distribution shows that the mean 24h-DARF can be as high as −30 W m−2 over some regions. The temporal variability of the 24h-DARF along the biomass burning season was also studied and showed large intraseasonal and interannual variability. We showed that our methodology considerably reduces statistical sources of uncertainties in the estimate of the DARF, when compared to previous approaches. DARF assessments using the new methodology agree well with ground-based measurements and radiative transfer models. This demonstrates the robustness of the new proposed methodology for assessing the radiative forcing for biomass burning aerosols. To our knowledge, this is the first time that satellite remote sensing assessments of the DARF have been compared with ground-based DARF estimates.


2021 ◽  
Author(s):  
Amit Kumar ◽  
Kumar Gaurav

<p>Climate and land-use change have altered the regional hydrological cycle. As a result, the mean summer monsoon rainfall has decreased by 10 % over central India during 1950-2015. This study evaluates the combined effect of climate and land-use change on the hydrological response of the upper Betwa River basin in Central India. We use Landsat satellite images from 1990 to 2018 to compute the changes in various land-use types; waterbody, built-up, forest, agriculture, and open land. In the past two decades, we found that the water body, built-up, and cropland have increased by 63 %, 65 %, and 3 %, respectively. However, forest and open land have decreased by 16 % and 23 %. Further, we observed a significant increase in annual average temperature and a decrease in the mean rainfall in the study area during 1980-2018.</p><p>We then coupled the land-use change with weather parameters (precipitation, temperature, wind speed, solar radiation, and relative humidity) and setup the SWAT (Soil and water assessment tool) model to simulate the hydrological responses in the catchment. We have run this model for two different time steps, 1980-2000 and 1998-2018, using the land-use of 1990 and 2018. Calibration and validation are performed for (1991-1994, 2000-2004) and (1995-1998, 2005-2008) respectively using SUFI-2 method. Our results show that the surface runoff and percolation decreased by -21 and -9 %, whereas evapotranspiration increased by 3 % in the upper Betwa River basin during 2001-2018. A decrease in rainfall, runoff, and percolation will have considerable implications on regional water security.</p>


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Susanne Rolinski ◽  
Alexander V. Prishchepov ◽  
Georg Guggenberger ◽  
Norbert Bischoff ◽  
Irina Kurganova ◽  
...  

AbstractChanges in land use and climate are the main drivers of change in soil organic matter contents. We investigated the impact of the largest policy-induced land conversion to arable land, the Virgin Lands Campaign (VLC), from 1954 to 1963, of the massive cropland abandonment after 1990 and of climate change on soil organic carbon (SOC) stocks in steppes of Russia and Kazakhstan. We simulated carbon budgets from the pre-VLC period (1900) until 2100 using a dynamic vegetation model to assess the impacts of observed land-use change as well as future climate and land-use change scenarios. The simulations suggest for the entire VLC region (266 million hectares) that the historic cropland expansion resulted in emissions of 1.6⋅ 1015 g (= 1.6 Pg) carbon between 1950 and 1965 compared to 0.6 Pg in a scenario without the expansion. From 1990 to 2100, climate change alone is projected to cause emissions of about 1.8 (± 1.1) Pg carbon. Hypothetical recultivation of the cropland that has been abandoned after the fall of the Soviet Union until 2050 may cause emissions of 3.5 (± 0.9) Pg carbon until 2100, whereas the abandonment of all cropland until 2050 would lead to sequestration of 1.8 (± 1.2) Pg carbon. For the climate scenarios based on SRES (Special Report on Emission Scenarios) emission pathways, SOC declined only moderately for constant land use but substantially with further cropland expansion. The variation of SOC in response to the climate scenarios was smaller than that in response to the land-use scenarios. This suggests that the effects of land-use change on SOC dynamics may become as relevant as those of future climate change in the Eurasian steppes.


Sign in / Sign up

Export Citation Format

Share Document