scholarly journals A low threshold for North Atlantic ice rafting from “low-slung slippery” late Pliocene ice sheets

2010 ◽  
Vol 25 (1) ◽  
Author(s):  
Ian Bailey ◽  
Clara T. Bolton ◽  
Robert M. DeConto ◽  
David Pollard ◽  
Ralf Schiebel ◽  
...  
1989 ◽  
Vol 4 (4) ◽  
pp. 413-446 ◽  
Author(s):  
M. E. Raymo ◽  
W. F. Ruddiman ◽  
J. Backman ◽  
B. M. Clement ◽  
D. G. Martinson

1996 ◽  
Vol 42 (142) ◽  
pp. 440-446 ◽  
Author(s):  
Roberto H. Gwiazda ◽  
Sidney R. Hemming ◽  
Wallace S. Broecker ◽  
Tullis Onsttot ◽  
Chris Mueller

Abstract40Ar/39Ar ages of most single ice-ratted amphiboles from Heinrich layer 2 (H2) from a core in the Labrador Sea, a core in the eastern North Atlantic and a core in the western North Atlantic range from 1600 to 2000 Ma. This range is identical to that for K/Ar ages from the Churchill province of the Canadian Shield that outcrops at Hudson Strait and forms the basement of the northern part of Hudson Bay. The ambient glacial sediment includes some younger and older grains derived from Paleozoic, Mesoproterozoic and Archean sources, but still the majority of the amphiboles have ages in the 1600–2000 Ma interval. The Ca/K ratios of these 1600–2000 Ma old amphiboles, however, have a bimodal distribution in contrast with the uniformity of the Ca/K ratios of H2 amphiboles. This indicates that 1600–2000 Ma old amphiboles of the ambient sediment were derived from an additional Early Proterozoic source besides Churchill province. In H2, Churchill-derived grains constitute 20–40% of the ice-rafted debris (IRD). The fraction in the ambient glacial sediment is 65–80%. Results presented here are consistent with the hypothesis that Heinrich events were produced by a sudden intensification of the iceberg discharge through Hudson Strait that mixed, in the North Atlantic, with icebergs that continued to calve from other ice sheets. The shift from mixed sources in the background sediment to a large dominance of Churchill province grains in H2 indicates that, even if calving of other ice sheets intensified during the Heinrich episode, the increase in the iceberg discharge via Hudson Strait from the Hudson Bay drainage basin of the Laurentide ice sheet was by far the largest.


2020 ◽  
Author(s):  
Sam Sherriff-Tadano ◽  
Ayako Abe-Ouchi ◽  
Akira Oka

Abstract. This study explores the effect of southward expansion of mid-glacial ice sheets on the global climate and the Atlantic meridional overturning circulation (AMOC), as well as the processes by which the ice sheets modify the AMOC. For this purpose, simulations of Marine Isotope Stage (MIS) 3 and 5a are performed with an atmosphere-ocean general circulation model. In the MIS3 and MIS5a simulations, the global average temperature decreases by 5.0 °C and 2.2 °C, respectively, compared with the preindustrial climate simulation. The AMOC weakens by 3 % in MIS3, whereas it is enhanced by 16 % in MIS5a, both of which are consistent with a reconstruction. Sensitivity experiments extracting the effect of the expansion of glacial ice sheets from MIS5a to MIS3 show a global cooling of 1.1 °C, contributing to about 40 % of the total surface cooling from MIS5a to MIS3. These experiments also demonstrate that the ice sheet expansion leads to a surface cooling of 2 °C over the Southern Ocean as a result of colder North Atlantic deep water. We find that the southward expansion of the mid-glacial ice sheet exerts a small impact on the AMOC. Partially coupled experiments reveal that the global surface cooling by the glacial ice sheet tends to reduce the AMOC by increasing the sea ice at both poles, and hence compensates for the strengthening effect of the enhanced surface wind over the North Atlantic. Our results show that the total effect of glacial ice sheets on the AMOC is determined by the two competing effects, surface wind and surface cooling. The relative strength of surface wind and surface cooling depends on the ice sheet configuration, and the strength of the surface cooling can be comparable to that of surface wind when changes in the extent of ice sheet are prominent.


2016 ◽  
Author(s):  
David A. Hodell ◽  
James E.T. Channell

Abstract. We present a 3.2-Myr record of stable isotopes and physical properties at IODP Site U1308 (re-occupation of DSDP Site 609) located within the ice-rafted detritus (IRD) belt of the North Atlantic. We compare the isotope and lithological proxies at Site U1308 with other North Atlantic records (e.g., Sites 982, 607/U1313 and U1304) to reconstruct the history of orbital and millennial-scale climate variability during the Quaternary. The Site U1308 record documents a progressive increase in the intensity of Northern Hemisphere glacial-interglacial cycles during the late Pliocene and Quaternary with mode transitions at ~ 2.7, 1.5, 0.9 and 0.65 Ma. These transitions mark times of change in the growth and stability of Northern Hemisphere ice sheets. They also coincide with increases in vertical carbon isotope gradients between the intermediate and deep ocean, suggesting changes in deep carbon storage and atmospheric CO2. Orbital and millennial climate variability co-evolved during the Quaternary such that the trend towards larger ice sheets was accompanied by changes in the style, frequency and intensity of millennial-scale variability. This co-evolution may be important for explaining the observed patterns of Quaternary climate change.


Geology ◽  
2000 ◽  
Vol 28 (2) ◽  
pp. 123 ◽  
Author(s):  
Francis E. Grousset ◽  
Claude Pujol ◽  
Laurent Labeyrie ◽  
Gérard Auffret ◽  
An Boelaert

Science ◽  
1977 ◽  
Vol 196 (4295) ◽  
pp. 1231-1231
Author(s):  
N. C. NEGUS ◽  
P. J. BERGER

2004 ◽  
Vol 23 (20-22) ◽  
pp. 2113-2126 ◽  
Author(s):  
Matthias Moros ◽  
Kay Emeis ◽  
Bjørg Risebrobakken ◽  
Ian Snowball ◽  
Antoon Kuijpers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document