The impact of the Madden-Julian Oscillation trend on the Arctic amplification of surface air temperature during the 1979-2008 boreal winter

2011 ◽  
Vol 38 (24) ◽  
pp. n/a-n/a ◽  
Author(s):  
Changhyun Yoo ◽  
Steven Feldstein ◽  
Sukyoung Lee
2012 ◽  
Vol 25 (17) ◽  
pp. 5777-5790 ◽  
Author(s):  
Changhyun Yoo ◽  
Sukyoung Lee ◽  
Steven B. Feldstein

Abstract Using lagged composites and projections with the thermodynamic energy equation, in this study the mechanisms that drive the boreal winter Arctic surface air temperature (SAT) change associated with the Madden–Julian oscillation (MJO) are investigated. The Wheeler and Hendon MJO index, which divides the MJO into 8 phases, where phase 1 (phase 5) corresponds to reduced (enhanced) convection over the Maritime Continent and western Pacific Ocean, is used. It is shown that the more zonally localized (uniform) tropical convective heating associated with MJO phase 5 (phase 1) leads to enhanced (reduced) excitation of poleward-propagating Rossby waves, which contribute to Arctic warming (cooling). Adiabatic warming/cooling, eddy heat flux, and the subsequent change in downward infrared radiation (IR) flux are found to be important for the Arctic SAT change. The adiabatic warming/cooling initiates the Arctic SAT change, however, subsequent eddy heat flux makes a greater contribution. The resulting SAT change is further amplified by alteration in downward IR. It is shown that changes in surface sensible and latent heat fluxes oppose the contribution by the above processes.


Atmosphere ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 757 ◽  
Author(s):  
Hainan Gong ◽  
Lin Wang ◽  
Wen Chen

The time-varying influences of the wintertime Arctic Oscillation (AO) on the concurrent East Asian surface air temperature (EAT) are investigated based on JRA-55 reanalysis data. Results reveal that there are multidecadal variations in the influences of wintertime AO on the EAT during 1958–2018. Before the mid-1980s, the impact of winter AO on the simultaneous EAT is weak and confined northward of 40° N over East Asia. After the mid-1980s, by contrast, the winter AO’s influence is stronger and can extend southward of 25° N over East Asia. The multidecadal variations of the winter AO–EAT relationship are mainly modulated by the magnitudes of the North Pacific center of the winter AO. During the periods with strong North Pacific center of the winter AO, in association with the positive phase of the winter AO, the low-level southeasterly anomalies on the west side of the anticyclone over North Pacific bring warm air from the ocean to East Asia and lead to a significant winter AO–EAT relationship. In contrast, the southerly anomalies are weak and even reversed to northerly over the coast of East Asia during the periods with weak North Pacific center of winter AO, which confines the influence of winter AO on northern East Asia and lead to an insignificant winter AO–EAT relationship. Our finding provides new insight into the understanding of the decadal changes of AO’s impacts on the regional climate.


2016 ◽  
Author(s):  
Kwang-Yul Kim ◽  
Benjamin D. Hamlington ◽  
Hanna Na ◽  
Jinju Kim

Abstract. Sea ice melting is proposed as a primary reason for the Artic amplification, although physical mechanism of the Arctic amplification and its connection with sea ice melting is still in debate. In the present study, monthly ERA-interim reanalysis data are analyzed via cyclostationary empirical orthogonal function analysis to understand the seasonal mechanism of sea ice melting in the Arctic Ocean and the Arctic amplification. While sea ice melting is widespread over much of the perimeter of the Arctic Ocean in summer, sea ice remains to be thin in winter only in the Barents-Kara Seas. Excessive turbulent heat flux through the sea surface exposed to air due to sea ice melting warms the atmospheric column. Warmer air increases the downward longwave radiation and subsequently surface air temperature, which facilitates sea surface remains to be ice free. A 1 % reduction in sea ice concentration in winter leads to ~ 0.76 W m−2 increase in upward heat flux, ~ 0.07 K increase in 850 hPa air temperature, ~ 0.97 W m−2 increase in downward longwave radiation, and ~ 0.26 K increase in surface air temperature. This positive feedback mechanism is not clearly observed in the Laptev, East Siberian, Chukchi, and Beaufort Seas, since sea ice refreezes in late fall (November) before excessive turbulent heat flux is available for warming the atmospheric column in winter. A detailed seasonal heat budget is presented in order to understand specific differences between the Barents-Kara Seas and Laptev, East Siberian, Chukchi, and Beaufort Seas.


2020 ◽  
Author(s):  
Steffen Hetzinger ◽  
Jochen Halfar ◽  
Zoltan Zajacz ◽  
Marco Möller ◽  
Max Wisshak

<p>The Arctic cryosphere is changing at a rapid pace due to global warming and the large-scale changes observed in the Arctic during the past decades exert a strong influence throughout the global climate system. The warming of Arctic surface air temperatures is more than twice as large as the global average over the last two decades and recent events indicate new extremes in the Arctic climate system, e.g. for the last five years Arctic annual surface air temperature exceeded that of any year since 1900 AD. Northern Spitsbergen, Svalbard, located in the High Arctic at 80°N, is a warming hotspot with an observed temperature rise of ~6°C over the last three decades indicating major global warming impacts. However, even the longest available datasets on Svalbard climatic conditions do not extend beyond the 1950s, inhibiting the study of long-term natural variability before anthropogenic influence. Ongoing climate trends strongly affect the state of both glaciers and seasonal snow in Svalbard. Modeled data suggest a marked increase in glacier runoff during recent decades in northern Svalbard. However, observational data are sparse and short and the potential effects on the surface ocean are unclear.<br>This study focuses on the ultra-high-resolution analysis of calcified coralline algal buildups growing attached to the shallow seafloor along Arctic coastlines. Analysis of these new annually-layered climate archives is based on the long-lived encrusting coralline algae <em>Clathromorphum compactum</em>, providing a historic perspective on recently observed changes. Here, we present a 200-year record of past surface ocean variability from Mosselbukta, Spitsbergen, northern Svalbard. By using algal Ba/Ca ratios as a proxy for past glacier-derived meltwater input, we investigate past multi-decadal-scale fluctuations in land-based freshwater contributions to the ocean surface layer. Our records, based on multiple coralline algal specimens, show a strong and statistically significant increasing trend in algal Ba/Ca ratios from the 1990s onwards, suggesting a drastic increase in land-based runoff at Mosselbukta. The drastic rate of increase is unprecedented during the last two centuries, directly capturing the impact of amplified surface air temperature warming on coastal high Arctic surface ocean environments.</p><p> </p>


2015 ◽  
Vol 28 (5) ◽  
pp. 1743-1763 ◽  
Author(s):  
Emma M. A. Dodd ◽  
Christopher J. Merchant ◽  
Nick A. Rayner ◽  
Colin P. Morice

Abstract Time series of global and regional mean surface air temperature (SAT) anomalies are a common metric used to estimate recent climate change. Various techniques can be used to create these time series from meteorological station data. The degree of difference arising from using five different techniques, based on existing temperature anomaly dataset techniques, to estimate Arctic SAT anomalies over land and sea ice was investigated using reanalysis data as a test bed. Techniques that interpolated anomalies were found to result in smaller errors than noninterpolating techniques relative to the reanalysis reference. Kriging techniques provided the smallest errors in estimates of Arctic anomalies, and simple kriging was often the best kriging method in this study, especially over sea ice. A linear interpolation technique had, on average, root-mean-square errors (RMSEs) up to 0.55 K larger than the two kriging techniques tested. Noninterpolating techniques provided the least representative anomaly estimates. Nonetheless, they serve as useful checks for confirming whether estimates from interpolating techniques are reasonable. The interaction of meteorological station coverage with estimation techniques between 1850 and 2011 was simulated using an ensemble dataset comprising repeated individual years (1979–2011). All techniques were found to have larger RMSEs for earlier station coverages. This supports calls for increased data sharing and data rescue, especially in sparsely observed regions such as the Arctic.


Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 164 ◽  
Author(s):  
Shangfeng Chen ◽  
Linye Song

A previous study indicated that the Arctic Oscillation (AO) and Siberian High (SH) are two important drivers for the interannual variation of winter surface air temperature (SAT) over southeast Asia. This study reveals that the impact of the winter SH on the southeast Asian SAT was stable. By contrast, the connection between the winter AO and southeast Asian SAT displays a pronounced interdecadal change around the late-1990s. Significant impact of the winter AO on the southeast Asian SAT can only be detected after the late-1990s. The result shows that change in the impact of the winter AO on southeast Asian SAT was mainly attributed to change in the spatial structure of the AO. Before the late-1990s, significant atmospheric signals related to the winter AO were confined to the North Atlantic region and the atmospheric anomalies over Eurasia were weak. As such, impact of the winter AO on the southeast Asian SAT was weak. By contrast, after the late-1990s, winter AO displays a more zonally symmetric structure, with significant negative sea level pressure (SLP) anomalies over the Arctic, and positive anomalies over mid-latitudes. Specifically, the positive SLP anomalies over East China induce clear northerly wind anomalies over southeast Asia, which lead to negative SAT anomalies there via wind-induced temperature advection. Hence, the winter AO has a significant impact on the southeast Asian SAT after the late-1990s. Further analysis shows that after the late-1990s, hindcast skill of the winter southeast Asian SAT anomalies was enhanced when taking both the winter AO and SH into account.


2020 ◽  
Author(s):  
Ilias Bougoudis ◽  
Anne-Marlene Blechschmidt ◽  
Andreas Richter ◽  
Sora Seo ◽  
John Burrows

<p>Arctic Amplification, the rapid increase of air temperature in higher latitudes over the last decades, is expected to have drastic impacts on all the sub-systems of the Arctic ecosystem. Bromine Oxides play a key role in the atmospheric composition of the Arctic. During polar spring, bromine molecules are released from young sea ice covered regions.  A rapid chemical chain reaction starts, the -so called 'bromine explosion', which depletes ozone, alters the production of OH, and thereby eventually changes the oxidizing capacity of the troposphere. Halogens oxidize elemental to gaseous mercury, which may then be deposited and harm the ecosystem. Based on current literature, there is considerable uncertainty on the impact of Arctic Amplification on halogen evolution. On one hand, the melting of multi-year sea ice should result in formation of more young sea ice, which favors bromine release. On the other hand, BrO explosion events are triggered by low temperatures, an effect expected to be reduced due to Arctic Amplification. Moreover, changes of other meteorological drivers, such as cyclone frequency and wind speed may impact on BrO amounts in the Arctic troposphere.</p><p>In this study, a long-term time-series of tropospheric BrO derived from 4 UV-VIS instruments (GOME, SCIAMACHY, GOME-2A, GOME-2B) is used as a basis, in order to investigate the impact of Arctic Amplification on BrO amounts in the Arctic. The long-term BrO data is being compared to sea ice age (NSIDC) and meteorological (air temperature, mean sea level pressure, wind speed and boundary layer height from ERA-5 & ASR-2) data. Our results focus on determining the relation between tropospheric BrO and its drivers, and especially on how the drivers impact on the formation of BrO plumes. Different cases studies throughout the 22 years of the BrO dataset were performed and evaluated. The changes in the tropospheric BrO abundances come in general agreement with changes in the drivers of BrO explosion events.</p><p> </p><p>We gratefully acknowledge the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Projektnummer 268020496 – TRR 172, within the Transregional Collaborative Research Center “ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)³”.</p>


2011 ◽  
Vol 139 (8) ◽  
pp. 2439-2454 ◽  
Author(s):  
Yang Zhou ◽  
Keith R. Thompson ◽  
Youyu Lu

AbstractA regression-based modeling approach is described for mapping the dependence of atmospheric state variables such as surface air temperature (SAT) on the Madden–Julian oscillation (MJO). For the special case of a linear model the dependence can be described by two maps corresponding to the amplitude and lag of the mean atmospheric response with respect to the MJO. In this sense the method leads to a more parsimonious description than traditional compositing, which usually results in eight maps, one for each MJO phase. Another advantage of the amplitude and phase maps is that they clearly identify propagating signals, and also regions where the response is strongly amplified or attenuated. A straightforward extension of the linear model is proposed to allow the amplitude and phase of the response to vary with the amplitude of the MJO or indices that define the background state of the atmosphere–ocean system. Application of the approach to global SAT for boreal winter clearly shows the propagation of MJO-related signals in both the tropics and extratropics and an enhanced response over eastern North America and Alaska (further enhanced during La Niña years). The SAT response over Alaska and eastern North America is caused mainly by horizontal advection related to variations in shore-normal surface winds that, in turn, can be traced (via signals in the 500-hPa geopotential height) back to MJO-related disturbances in the tropics.


2021 ◽  
Author(s):  
Zhaomin Ding ◽  
Renguang Wu

AbstractThis study investigates the impact of sea ice and snow changes on surface air temperature (SAT) trends on the multidecadal time scale over the mid- and high-latitudes of Eurasia during boreal autumn, winter and spring based on a 30-member ensemble simulations of the Community Earth System Model (CESM). A dynamical adjustment method is used to remove the internal component of circulation-induced SAT trends. The leading mode of dynamically adjusted SAT trends is featured by same-sign anomalies extending from northern Europe to central Siberia and to the Russian Far East, respectively, during boreal spring and autumn, and confined to western Siberia during winter. The internally generated component of sea ice concentration trends over the Barents-Kara Seas contributes to the differences in the thermodynamic component of internal SAT trends across the ensemble over adjacent northern Siberia during all the three seasons. The sea ice effect is largest in autumn and smallest in winter. Eurasian snow changes contribute to the spread in dynamically adjusted SAT trends as well around the periphery of snow covered region by modulating surface heat flux changes. The snow effect is identified over northeast Europe-western Siberia in autumn, north of the Caspian Sea in winter, and over eastern Europe-northern Siberia in spring. The effects of sea ice and snow on the SAT trends are realized mainly by modulating upward shortwave and longwave radiation fluxes.


Sign in / Sign up

Export Citation Format

Share Document