scholarly journals Oxygen torus in the deep inner magnetosphere and its contribution to recurrent process of O+-rich ring current formation

2011 ◽  
Vol 116 (A10) ◽  
pp. n/a-n/a ◽  
Author(s):  
M. Nosé ◽  
K. Takahashi ◽  
R. R. Anderson ◽  
H. J. Singer
1995 ◽  
Vol 38 (2) ◽  
Author(s):  
M. M. Zossi de Artigas ◽  
J. R. Manzano

Coupling parameter, E, and the total energy dissipated by the magnetosphere, UT, are determined for six disturbed periods, following three known criteria for UT computation. It is observed that UT exceeds E for Dst < -90 nT, for alI models. Differences between models reside on the estimated valnes for the particles' life time il1 the equatorial ring current. The values of TR, used in the models, are small during the main phase of the di."turbance, in disagreement with the charge exchange life time of the majority species, H+ and O'-. Based on this conclusion, a different criterion to calculate TR is proposed, differentiating the different stages of the perturbation. TR is calculated, for the main phase of the storm, from the rate of energy deposition estimation, Q, in the ring current. For Dst recovery phase, the vallles are obtained from a ring current decay law computation. The UTvu calculated, physically more coherent with the processes occurring during the event, is now smaller than expected. In this sense, it is understood that the power generated by the solar wind-magnetosphere dy- namo, should also be distributed in the inner magnetosphere, auroral zones and equatorial ring current, as in the outer magnetosphere, plasmoids in the tail shot in antisolar direction. A further adjustment of E, with the Chapman-Ferraro distance, 10' variable, has been made. Although the reslllts, improve the estimation of E, they are sti!l smaller than UT, except UTNU, for some disturbed periods. This result indicates the uncertainty in the computation of the input energy, by using the many expressions proposed in the literature, which are always presented as laws proportional to a given group of parameters, with an unknown factor of proportionality, which deserves more detailed physical analysis.


2016 ◽  
Vol 43 (10) ◽  
pp. 4736-4744 ◽  
Author(s):  
Matina Gkioulidou ◽  
A. Y. Ukhorskiy ◽  
D. G. Mitchell ◽  
L. J. Lanzerotti

2019 ◽  
Author(s):  
Yanyan Yang ◽  
Chao Shen ◽  
Yong Ji

Abstract. It is generally believed that field aligned currents (FACs) and the ring current (RC) are two dominant parts of the inner magnetosphere. However, using the Cluster spacecraft crossing of the pre-midnight inner plasma sheet in the latitude region between 10° N and 30° N, it is found that, during large storm events, in addition to FACs and the RC, there also exist strong southward and northward currents, which cannot be FACs, because the magnetic field in these regions is mainly along the XY plane. Detailed investigation shows that both magnetic field lines (MFLs) and currents in these regions highly fluctuate. When the curvature of MFLs changes direction in the XY plane, the current also alternatively switches between southward and northward. Further analysis of the current generation mechanism indicates that the most reasonable candidate for the origin of these southward and northward currents is the curvature drift of energetic particles.


2012 ◽  
Vol 30 (3) ◽  
pp. 597-611 ◽  
Author(s):  
S. Grimald ◽  
I. Dandouras ◽  
P. Robert ◽  
E. Lucek

Abstract. Knowledge of the inner magnetospheric current system (intensity, boundaries, evolution) is one of the key elements for the understanding of the whole magnetospheric current system. In particular, the calculation of the current density and the study of the changes in the ring current is an active field of research as it is a good proxy for the magnetic activity. The curlometer technique allows the current density to be calculated from the magnetic field measured at four different positions inside a given current sheet using the Maxwell-Ampere's law. In 2009, the CLUSTER perigee pass was located at about 2 RE allowing a study of the ring current deep inside the inner magnetosphere, where the pressure gradient is expected to invert direction. In this paper, we use the curlometer in such an orbit. As the method has never been used so deep inside the inner magnetosphere, this study is a test of the curlometer in a part of the magnetosphere where the magnetic field is very high (about 4000 nT) and changes over small distances (ΔB = 1nT in 1000 km). To do so, the curlometer has been applied to calculate the current density from measured and modelled magnetic fields and for different sizes of the tetrahedron. The results show that the current density cannot be calculated using the curlometer technique at low altitude perigee passes, but that the method may be accurate in a [3 RE; 5 RE] or a [6 RE; 8.3 RE] L-shell range. It also demonstrates that the parameters used to estimate the accuracy of the method are necessary, but not sufficient conditions.


Nature ◽  
1981 ◽  
Vol 292 (5825) ◽  
pp. 724-726 ◽  
Author(s):  
J. E. P. Connerney ◽  
M. H. Acuña ◽  
N. F. Ness

Author(s):  
K. A. Sorathia ◽  
A. Michael ◽  
V.G. Merkin ◽  
A.Y. Ukhorskiy ◽  
D. L. Turner ◽  
...  

During geomagnetically active periods ions are transported from the magnetotail into the inner magnetosphere and accelerated to energies of tens to hundreds of keV. These energetic ions, of mixed composition with the most important species being H+ and O+, become the dominant source of plasma pressure in the inner magnetosphere. Ion transport and acceleration can occur at different spatial and temporal scales ranging from global quasi-steady convection to localized impulsive injection events and may depend on the ion gyroradius. In this study we ascertain the relative importance of mesoscale flow structures and the effects of ion non-adiabaticity on the produced ring current. For this we use: global magnetohydrodynamic (MHD) simulations to generate self-consistent electromagnetic fields under typical driving conditions which exhibit bursty bulk flows (BBFs); and injected test particles, initialized to match the plasma moments of the MHD simulation, and subsequently evolved according to the kinetic equations of motion. We show that the BBFs produced by our simulation reproduce thermodynamic and magnetic statistics from in situ measurements and are numerically robust. Mining the simulation data we create a data set, over a billion points, connecting particle transport to characteristics of the MHD flow. From this we show that mesoscale bubbles, localized depleted entropy regions, and particle gradient drifts are critical for ion transport. Finally we show, using identical particle ensembles with varying mass, that O+ non-adiabaticity creates qualitative differences in energization and spatial distribution while H+ non-adiabaticity has non-negligible implications for loss timescales.


2018 ◽  
Vol 36 (5) ◽  
pp. 1439-1456 ◽  
Author(s):  
Joseph D. Perez ◽  
James Edmond ◽  
Shannon Hill ◽  
Hanyun Xu ◽  
Natalia Buzulukova ◽  
...  

Abstract. For the first time, direct comparisons of the equatorial ion partial pressure and pitch angle anisotropy observed by TWINS and simulated by CIMI are presented. The TWINS ENA images are from a 4-day period, 7–10 September 2015. The simulations use both the empirical Weimer 2K and the self-consistent RCM electric potentials. There are two moderate storms in succession during this period. In most cases, we find that the general features of the ring current in the inner magnetosphere obtained from the observations and the simulations are similar. Nevertheless, we do also see consistent contrasts between the simulations and observations. The simulated partial pressure peaks are often inside the observed peaks and more toward dusk than the measured values. There are also cases in which the measured equatorial ion partial pressure shows multiple peaks that are not seen in the simulations. This occurs during a period of intense AE index. The CIMI simulations consistently show regions of parallel anisotropy spanning the night side between approximately 6 and 8 RE, whereas the parallel anisotropy is seen in the observations only during the main phase of the first storm. The evidence from the unique global view provided by the TWINS observations strongly suggests that there are features in the ring current partial pressure distributions that can be best explained by enhanced electric shielding and/or spatially localized, short-duration injections.


2010 ◽  
Vol 28 (1) ◽  
pp. 123-140 ◽  
Author(s):  
N. Yu. Ganushkina ◽  
M. W. Liemohn ◽  
M. V. Kubyshkina ◽  
R. Ilie ◽  
H. J. Singer

Abstract. Magnetic field and current system changes in Earth's inner magnetosphere during storm times are studied using two principally different modeling approaches: on one hand, the event-oriented empirical magnetic field model, and, on the other, the Space Weather Modeling Framework (SWMF) built around a global MHD simulation. Two storm events, one moderate storm on 6–7 November 1997 with Dst minimum about −120 nT and one intense storm on 21–23 October 1999 with Dst minimum about −250 nT were modeled. Both modeling approaches predicted a large ring current (first partial, later symmetric) contribution to the magnetic field perturbation for the intense storm. For the moderate storm, the tail current plays a dominant role in the event-oriented model results, while the SWMF results showed no strong tail current in the main phase, which resulted in a poorly timed storm peak relative to the observations. These results imply that the the development of a ring current depends on a strong force to inject the particles deep into the inner magnetosphere, and that the tail current is an important external source for the distortions of the inner magnetospheric magnetic field for both storms. Neither modeling approach was able to reproduce all the variations in the Bx and By components observed at geostationary orbit by GOES satellites during these two storms: the magnetopause current intensifications are inadequate, and the field-aligned currents are not sufficiently represented. While the event-oriented model reproduces rather well the Bz component at geostationary orbit, including the substorm-associated changes, the SWMF field is too dipolar at these locations. The empirical model is a useful tool for validation of the first-principle based models such as the SWMF.


2021 ◽  
Author(s):  
Yiqun Yu ◽  
Shengjun Su ◽  
Jinbin Cao ◽  
Michael Denton ◽  
Vania Jordanova

&lt;p&gt;Satellite surface charging often occurs in the inner magnetosphere from the pre-midnight to the dawn sector when electron fluxes of&amp;#160; hundreds of eV to tens of keV are largely enhanced. Inner magnetosphere ring current models can be used to simulate/predict the satellite surface charging environment, with their flux outer boundary conditions specified either based on observations or provided by other models, such as MHD models. In the latter approach, the flux spectrum at the outer boundary is usually assumed to follow a Kappa or Maxwellian distribution, which however often departs greatly from, or underestimates, the realistic distribution below tens of keV, the energy range that is crucial in the spacecraft surface charging anomaly. This study aims to optimize the electron flux boundary condition of the inner magnetosphere ring current model to achieve a better representation of the surface charging environment. The MHD-parameterized flux spectrum is combined with an empirical electron flux model that specifies the &lt; 40 keV electron flux spectrum. New simulation results indicate that the surface charging environment, monitored by an integrated electron flux between 10&lt;E&lt;50 keV, is significantly enhanced by 1-2 orders of magnitude as opposed to the case in which Kappa/Maxwellian distribution is used at the outer boundary. The new results therefore show better agreement with Van Allen Probes measurements. The improved boundary condition also impacts the auroral precipitation, which may change the conductivity and circulated dynamics.&amp;#160;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document