scholarly journals Was the 1952 Tokachi-oki earthquake (Mw= 8.1) a typical underthrust earthquake?: Plate interface reflectivity measurement by an air gun--ocean bottom seismometer experiment in the Kuril Trench

2012 ◽  
Vol 13 (8) ◽  
pp. n/a-n/a ◽  
Author(s):  
Ryosuke Azuma ◽  
Yoshio Murai ◽  
Kei Katsumata ◽  
Yuichi Nishimura ◽  
Takuji Yamada ◽  
...  
1988 ◽  
Vol 25 (5) ◽  
pp. 744-759 ◽  
Author(s):  
B. J. Todd ◽  
I. Reid ◽  
C. E. Keen

A seismic-refraction survey providing deep crustal structure information of the continent–ocean boundary across the South-west Newfoundland Transform Margin was carried out using large air-gun sources and ocean-bottom seismometer receivers. Continental crust ~30 km thick beneath the southern Grand Banks (P-wave velocity = 6.2–6.5 km/s) thins oceanward to a 25 km wide transition zone. In the transition zone, Paleozoic basement of the Grand Banks (5.5–5.7 km/s) is replaced by a basement of oceanic volcanics and synrift sediments (4.5–5.5 km/s). Seaward of the transition zone the crust is oceanic in character, with a velocity gradient from 4.7 to 6.5 km/s and a thickness of 7–8 km. Oceanic layer 3 is absent. No significant thickness of intermediate-velocity (>7 km/s) material is present at the continent–ocean transition, indicating that no under-plating of continental crust has taken place. The continent–ocean transition across the transform margin is much narrower than across rifted margins, supporting the theory that formation of the transform margin is by shearing of continental plates.


Solid Earth ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 765-784 ◽  
Author(s):  
Andrzej Górszczyk ◽  
Stéphane Operto ◽  
Laure Schenini ◽  
Yasuhiro Yamada

Abstract. Imaging via pre-stack depth migration (PSDM) of reflection towed-streamer multichannel seismic (MCS) data at the scale of the whole crust is inherently difficult. This is because the depth penetration of the seismic wavefield is controlled, firstly, by the acquisition design, such as streamer length and air-gun source configuration, and secondly by the complexity of the crustal structure. Indeed, the limited length of the streamer makes the estimation of velocities from deep targets challenging due to the velocity–depth ambiguity. This problem is even more pronounced when processing 2-D seismic data due to the lack of multi-azimuthal coverage. Therefore, in order to broaden our knowledge about the deep crust using seismic methods, we present the development of specific imaging workflows that integrate different seismic data. Here we propose the combination of velocity model building using (i) first-arrival tomography (FAT) and full-waveform inversion (FWI) of wide-angle, long-offset data collected by stationary ocean-bottom seismometers (OBSs) and (ii) PSDM of short-spread towed-streamer MCS data for reflectivity imaging, with the former velocity model as a background model. We present an application of such a workflow to seismic data collected by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) and the Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER) in the eastern Nankai Trough (Tokai area) during the 2000–2001 Seize France Japan (SFJ) experiment. We show that the FWI model, although derived from OBS data, provides an acceptable background velocity field for the PSDM of the MCS data. From the initial PSDM, we refine the FWI background velocity model by minimizing the residual move-outs (RMOs) picked in the pre-stack-migrated volume through slope tomography (ST), from which we generate a better-focused migrated image. Such integration of different seismic datasets and leading-edge imaging techniques led to greatly improved imaging at different scales. That is, large to intermediate crustal units identified in the high-resolution FWI velocity model extensively complement the short-wavelength reflectivity inferred from the MCS data to better constrain the structural factors controlling the geodynamics of the Nankai Trough.


2022 ◽  
Author(s):  
Emmy Tsui-Yu CHANG ◽  
Laetitia Mozziconacci

Abstract Faulting in subducting plates is a critical process that changes the mechanical properties the subducting lithosphere and serves as a carrier of surface materials into mantle wedges. Two intraplate earthquake sequences located in the northern Manila subduction system were investigated in this study, which revealed distinct fault planes but a contrasting seismogeny over the northern Manila Trench. The seismic sequences analyzed in this study were of small-to-moderate events. The events were separately acquired by two ocean-bottom seismometer networks deployed on the frontal accretionary wedge in 2005 and the outer trench slope in 2006. The retrieved seismicity in the frontal wedge (in 2005) mainly included the overpressured sequence, whereas that in the approaching plate (in 2006) was aftershocks of an extensional faulting sequence. The obtained seismic velocity models and Vp/Vs ratios revealed that the overpressure was likely caused by dehydration within the shallow subduction zone. By using the near-field waveform inversion algorithm, we determined focal mechanism solutions for a few relatively large earthquakes. Data from global seismic observations were also used to conclude that stress transfer may be responsible for the seismic activity in the study area in 2005–2006. In late 2005, the plate interface in the frontal wedge area was unlocked by overpressure effect with the thrusting-dominant sequence. This event changed the stress regime across the Manila Trench and triggered the normal fault extension at the outer trench slope in mid-2006. However, the hybrid focal solution indicating reverse and strike-slip mechanisms provided in this study revealed that the plate interface had become locked again in late 2006.


2021 ◽  
Vol 9 ◽  
Author(s):  
Antonio González-Fernández

The stacked refraction convolution section can be used as an interpretation tool in wide-angle refraction seismic data generated by air gun shooting and recorded by Ocean Bottom Seismometers (OBS). The refraction convolution section is a full-wave extension of the Generalized Reciprocal Method (GRM), a method frequently used in shallow refraction seismic interpretation, but not applied to deep crustal-scale studies. The sum of the travel times of the waves refracted in the same interface and recorded in a pair of forward and reverse profiles, time-corrected by the reciprocal time, is an estimation close to the two-way travel times of the multichannel seismic reflection sections, but with seismic rays illuminating the interfaces upwards. The sum of seismic traces is obtained with the convolution section. Furthermore, several pairs of convolved forward-reverse refraction recordings of the same area can be stacked together to improve the signal to noise ratio. To show the applicability of the refraction convolution section in OBS deep data, we interpreted the basement structure of the Tamayo Through Basin in the southern Gulf of California, offshore Mexico. We compared the results with both, a multichannel seismic section recorded in the same profile, and the previous interpretations of the same wide-angle seismic data modeled with ray tracing and tomography methods. The basement imaged by the stacked refraction convolution section is similar in geometry to that obtained by seismic reflection processing. The stacked refraction convolution section identifies the full extent of the basement and confirms the location of a nearly constant thickness volcanic layer in the northwestern half of the basin. However, only a small area of volcanic deposits is found in the shallower parts of the southwestern margin. We also show that the convolution process can be used to estimate the occurrence of lateral variations of seismic velocities in the basement, as a further application of the GRM to deep refraction data.


2019 ◽  
Vol 91 (1) ◽  
pp. 237-247 ◽  
Author(s):  
Lidong Bie ◽  
Andreas Rietbrock ◽  
Stephen Hicks ◽  
Robert Allen ◽  
Jon Blundy ◽  
...  

Abstract The Lesser Antilles arc is only one of two subduction zones where slow‐spreading Atlantic lithosphere is consumed. Slow‐spreading may result in the Atlantic lithosphere being more pervasively and heterogeneously hydrated than fast‐spreading Pacific lithosphere, thus affecting the flux of fluids into the deep mantle. Understanding the distribution of seismicity can help unravel the effect of fluids on geodynamic and seismogenic processes. However, a detailed view of local seismicity across the whole Lesser Antilles subduction zone is lacking. Using a temporary ocean‐bottom seismic network we invert for hypocenters and 1D velocity model. A systematic search yields a 27 km thick crust, reflecting average arc and back‐arc structures. We find abundant intraslab seismicity beneath Martinique and Dominica, which may relate to the subducted Marathon and/or Mercurius Fracture Zones. Pervasive seismicity in the cold mantle wedge corner and thrust seismicity deep on the subducting plate interface suggest an unusually wide megathrust seismogenic zone reaching ∼65  km depth. Our results provide an excellent framework for future understanding of regional seismic hazard in eastern Caribbean and the volatile cycling beneath the Lesser Antilles arc.


2019 ◽  
Vol 38 (9) ◽  
pp. 680-690 ◽  
Author(s):  
Benoît Teyssandier ◽  
John J. Sallas

Ten years ago, CGG launched a project to develop a new concept of marine vibrator (MV) technology. We present our work, concluding with the successful acquisition of a seismic image using an ocean-bottom-node 2D survey. The expectation for MV technology is that it could reduce ocean exposure to seismic source sound, enable new acquisition solutions, and improve seismic data quality. After consideration of our objectives in terms of imaging, productivity, acoustic efficiency, and operational risk, we developed two spectrally complementary prototypes to cover the seismic bandwidth. In practice, an array composed of several MV units is needed for images of comparable quality to those produced from air-gun data sets. Because coupling to the water is invariant, MV signals tend to be repeatable. Since far-field pressure is directly proportional to piston volumetric acceleration, the far-field radiation can be well controlled through accurate piston motion control. These features allow us to shape signals to match precisely a desired spectrum while observing equipment constraints. Over the last few years, an intensive validation process was conducted at our dedicated test facility. The MV units were exposed to 2000 hours of in-sea testing with only minor technical issues.


Sign in / Sign up

Export Citation Format

Share Document