scholarly journals Outer trench slope extension to frontal wedge compression in a subducting plate

Author(s):  
Emmy Tsui-Yu CHANG ◽  
Laetitia Mozziconacci

Abstract Faulting in subducting plates is a critical process that changes the mechanical properties the subducting lithosphere and serves as a carrier of surface materials into mantle wedges. Two intraplate earthquake sequences located in the northern Manila subduction system were investigated in this study, which revealed distinct fault planes but a contrasting seismogeny over the northern Manila Trench. The seismic sequences analyzed in this study were of small-to-moderate events. The events were separately acquired by two ocean-bottom seismometer networks deployed on the frontal accretionary wedge in 2005 and the outer trench slope in 2006. The retrieved seismicity in the frontal wedge (in 2005) mainly included the overpressured sequence, whereas that in the approaching plate (in 2006) was aftershocks of an extensional faulting sequence. The obtained seismic velocity models and Vp/Vs ratios revealed that the overpressure was likely caused by dehydration within the shallow subduction zone. By using the near-field waveform inversion algorithm, we determined focal mechanism solutions for a few relatively large earthquakes. Data from global seismic observations were also used to conclude that stress transfer may be responsible for the seismic activity in the study area in 2005–2006. In late 2005, the plate interface in the frontal wedge area was unlocked by overpressure effect with the thrusting-dominant sequence. This event changed the stress regime across the Manila Trench and triggered the normal fault extension at the outer trench slope in mid-2006. However, the hybrid focal solution indicating reverse and strike-slip mechanisms provided in this study revealed that the plate interface had become locked again in late 2006.

2001 ◽  
Vol 53 (4) ◽  
pp. 337-355 ◽  
Author(s):  
Takeshi SATO ◽  
Masanao SHINOHARA ◽  
Kiyoshi SUYEHIRO ◽  
Nobuhiro ISEZAKI ◽  
Boris Y. KARP ◽  
...  

Solid Earth ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 1035-1049 ◽  
Author(s):  
Dietrich Lange ◽  
Frederik Tilmann ◽  
Tim Henstock ◽  
Andreas Rietbrock ◽  
Danny Natawidjaja ◽  
...  

Abstract. The Sumatran subduction zone exhibits strong seismic and tsunamogenic potential with the prominent examples of the 2004, 2005 and 2007 earthquakes. Here, we invert travel-time data of local earthquakes for vp and vp∕vs velocity models of the central Sumatran forearc. Data were acquired by an amphibious seismometer network consisting of 52 land stations and 10 ocean-bottom seismometers located on a segment of the Sumatran subduction zone that had not ruptured in a great earthquake since 1797 but witnessed recent ruptures to the north in 2005 (Nias earthquake, Mw = 8.7) and to the south in 2007 (Bengkulu earthquake, Mw = 8.5). The 2-D and 3-D vp velocity anomalies reveal the downgoing slab and the sedimentary basins. Although the seismicity pattern in the study area appears to be strongly influenced by the obliquely subducting Investigator Fracture Zone to at least 200 km depth, the 3-D velocity model shows prevailing trench-parallel structures at depths of the plate interface. The tomographic model suggests a thinned crust below the basin east of the forearc islands (Nias, Pulau Batu, Siberut) at  ∼ 180 km distance to the trench. vp velocities beneath the magmatic arc and the Sumatran fault zone (SFZ) are around 5 km s−1 at 10 km depth and the vp∕vs ratios in the uppermost 10 km are low, indicating the presence of felsic lithologies typical for continental crust. We find moderately elevated vp∕vs values of 1.85 at  ∼ 150 km distance to the trench in the region of the Mentawai Fault. vp∕vs ratios suggest an absence of large-scale alteration of the mantle wedge and might explain why the seismogenic plate interface (observed as a locked zone from geodetic data) extends below the continental forearc Moho in Sumatra. Reduced vp velocities beneath the forearc basin covering the region between the Mentawai Islands and the Sumatra mainland possibly reflect a reduced thickness of the overriding crust.


2021 ◽  
Author(s):  
Felix Noah Wolf ◽  
Dietrich Lange ◽  
Anke Dannowski ◽  
Martin Thorwart ◽  
Wayne Crawford ◽  
...  

Abstract. The Liguro-Provençal basin was formed as a back-arc basin of the retreating Calabrian-Apennines subduction zone during the Oligocene and Miocene. The resulting rotation of the Corsica-Sardinia block is associated with rifting, shaping the Ligurian Sea. It is still debated whether oceanic or atypical oceanic crust was formed or if the crust is continental and experienced extreme thinning during the opening of the basin. We invert velocity models using an amphibious network of seismic stations, including 22 broadband Ocean Bottom Seismometers (OBS) to investigate the lithospheric structure of the Ligurian sea. The instruments were installed in the Ligurian Sea for eight months between June 2017 and February 2018 as part of the AlpArray seismic network. Because of additional noise sources in the ocean, OBS data are rarely used for ambient noise studies. However, we attentively pre-process the data, including corrections for instrument tilt and seafloor compliance. We took extra care to exclude higher modes of the ambient-noise Rayleigh waves. We calculate daily cross-correlation functions for the LOBSTER array and surrounding land stations. Additionally, we correlate short time windows that include teleseismic earthquakes that allow us to derive surface wave group velocities for longer periods than using ambient noise only. Group velocity maps are obtained by inverting Green’s functions derived from the cross-correlation of ambient noise and teleseismic events, respectively. We then used the resulting 3D group velocity information to calculate 1D depth inversions for S-wave velocities. The shear-wave velocity results show a deepening of the Moho from 12 km at the southwestern basin centre to 20–25 km at the Ligurian coast in the northeast and over 30 km at the Provençal coast. We find no hint on mantle serpentinisation and no evidence for an Alpine slab, at least down to depths of 25 km. However, we see a separation of the southwestern and northeastern Ligurian Basin that coincides with the promoted prolongation of the Alpine front.


2019 ◽  
Vol 91 (1) ◽  
pp. 237-247 ◽  
Author(s):  
Lidong Bie ◽  
Andreas Rietbrock ◽  
Stephen Hicks ◽  
Robert Allen ◽  
Jon Blundy ◽  
...  

Abstract The Lesser Antilles arc is only one of two subduction zones where slow‐spreading Atlantic lithosphere is consumed. Slow‐spreading may result in the Atlantic lithosphere being more pervasively and heterogeneously hydrated than fast‐spreading Pacific lithosphere, thus affecting the flux of fluids into the deep mantle. Understanding the distribution of seismicity can help unravel the effect of fluids on geodynamic and seismogenic processes. However, a detailed view of local seismicity across the whole Lesser Antilles subduction zone is lacking. Using a temporary ocean‐bottom seismic network we invert for hypocenters and 1D velocity model. A systematic search yields a 27 km thick crust, reflecting average arc and back‐arc structures. We find abundant intraslab seismicity beneath Martinique and Dominica, which may relate to the subducted Marathon and/or Mercurius Fracture Zones. Pervasive seismicity in the cold mantle wedge corner and thrust seismicity deep on the subducting plate interface suggest an unusually wide megathrust seismogenic zone reaching ∼65  km depth. Our results provide an excellent framework for future understanding of regional seismic hazard in eastern Caribbean and the volatile cycling beneath the Lesser Antilles arc.


Geophysics ◽  
2012 ◽  
Vol 77 (1) ◽  
pp. E57-E65 ◽  
Author(s):  
Vanessa Brown ◽  
Kerry Key ◽  
Satish Singh

Marine controlled-source electromagnetic (CSEM) data can be highly sensitive to the presence of resistive hydrocarbon bearing layers in the subsurface. Yet, due to the relatively poor depth resolution of CSEM data and the smoothness constraints imposed by electromagnetic (EM) inversion methods, the resulting resistivity models are often highly smoothed-out, typically underestimating the reservoir resistivity and overestimating its thickness. Conversely, seismic full-waveform inversion (FWI) can accurately recover the depths of seismic velocity changes, yet, is relatively insensitive the presence of hydrocarbons. In spite of their low depth resolution, CSEM data have been shown to be highly sensitive to the resistivity-thickness product of buried resistive layers, suggesting that if the thickness of a target layer can be constrained a priori, very accurate resistivity estimates may be obtained. We developed a method for leveraging the high depth resolution of FWI into a standard CSEM inversion algorithm so that the resulting resistivity models have depth constraints imposed by the seismic structure and consequently may obtain more accurate resistivity estimates. The seismically regularized CSEM inversion that we propose is conceptually similar to minimum-gradient support (MGS) regularization, but it uses regularization weights based on gradients in the seismic velocity model rather than the self-reinforcing model resistivity gradients used in the typical MGS scheme. A suite of synthetic model tests showed how this approach compares with standard smooth and MGS inversions for a range of rock types and hence, levels of correlation between the seismic and resistivity structures, showing that a significantly improved resistivity model can be obtained when the velocity and resistivity profiles are correlated in depth. We also found that this regularization weighting method can be extended to use depth constraints from geophysical data other than seismic velocity models. Tests on a real data example from the Pluto gas field demonstrated how the regularization weights can also be set using a nearby well log, resulting in a more compact estimate of the reservoir resistivity than possible with a standard smooth inversion.


2019 ◽  
Vol 109 (4) ◽  
pp. 1312-1330
Author(s):  
Loïc Viens ◽  
Marine A. Denolle

Abstract Long‐period ground motions from large (Mw≥7.0) subduction‐zone earthquakes are a real threat for large‐scale human‐made structures. The Nankai subduction zone, Japan, is expected to host a major megathrust earthquake in the near future and has therefore been instrumented with offshore and onshore permanent seismic networks. We use the ambient seismic field continuously recorded at these stations to simulate the long‐period (4–10 s) ground motions from past and future potential offshore earthquakes. First, we compute impulse response functions (IRFs) between an ocean‐bottom seismometer of the Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) network, which is located offshore on the accretionary wedge, and 60 onshore Hi‐net stations using seismic interferometry by deconvolution. As this technique only preserves the relative amplitude information of the IRFs, we use a moderate Mw 5.5 event to calibrate the amplitudes to absolute levels. After calibration, the IRFs are used together with a uniform stress‐drop source model to simulate the long‐period ground motions of the 2004 Mw 7.2 intraplate earthquake. For both events, the residuals of the 5% damped spectral acceleration (SA) computed from the horizontal and vertical components of the observed and simulated waveforms exhibit almost no bias and acceptable uncertainties. We also compare the observed SA values of the Mw 7.2 event to those from the subduction‐zone BC Hydro ground‐motion model (GMM) and find that our simulations perform better than the model. Finally, we simulate the long‐period ground motions of a hypothetical Mw 8.0 subduction earthquake that could occur along the Nankai trough. For this event, our simulations generally exhibit stronger long‐period ground motions than those predicted by the BC Hydro GMM. This study suggests that the ambient seismic field recorded by the ever‐increasing number of ocean‐bottom seismometers can be used to simulate the long‐period ground motions from large megathrust earthquakes.


2018 ◽  
Author(s):  
Dietrich Lange ◽  
Frederik Tilmann ◽  
Tim Henstock ◽  
Andreas Rietbrock ◽  
Danny Natawidjaja ◽  
...  

Abstract. The Sumatran subduction zone exhibits strong seismic and tsunamogenic potential with the prominent examples of the 2004, 2005 and 2007 earthquakes. Here, we invert travel time data of local earthquakes for vp and vp/vs velocity models of the central Sumatran forearc. Data were acquired by an amphibious seismometer network consisting of 52 land stations and 10 ocean bottom seismometers located on a segment of the Sumatran subduction zone that had not ruptured in a great earthquake since 1797 but witnessed recent ruptures to the north in 2005 (Nias earthquake, Mw = 8.7) and to the south in 2007 (Bengkulu earthquake, Mw = 8.5). 2D and 3D vp velocity anomalies reveal the downgoing slab and the sedimentary basins. Although the seismicity pattern in the study area appears to be strongly influenced by the obliquely subducting Investigator Fracture Zone to at least 200 km depth, the 3D velocity model shows prevailing trench parallel structures at depths of the plate interface. The tomographic model suggests a thinned crust below the basin east of the forearc islands (Nias, Pulau Batu, Siberut) at ~ 180 km distance to the trench. Vp velocities beneath the magmatic arc and the Sumatran fault zone SFZ are around 5 km/s at 10 km depth and the vp/vs ratios in the uppermost 10 km are low, indicating the presence of felsic lithologies typical for continental crust. We find moderately elevated vp/vs values of 1.85 at ~ 150 km distance to the trench in the region of the Mentawai fault. Vp/vs ratios suggest absence of large scale alteration of the mantle wedge and might explain why the seismogenic plate interface (observed as a locked zone from geodetic data) extends below the continental forearc Moho in Sumatra. Reduced vp velocities beneath the forearc basin covering the region between Mentawai Islands and the Sumatra mainland possibly reflect a reduced thickness of the overriding crust.


1982 ◽  
Vol 72 (1) ◽  
pp. 207-220
Author(s):  
Jeff Lawton ◽  
Cliff Frohlich ◽  
Hans Pulpan ◽  
Gary V. Latham

abstract The spatial pattern of earthquakes determined by a combined land and ocean bottom seismometer (OBS) network in the Kodiak Island shelf region differs systematically from the pattern determined by a land network and from locations determined by the International Seismological Centre (ISC). As a part of a larger study of seismic risk on the continental shelf near Kodiak Island, we augmented the University of Alaska land network by deploying 11 recoverable OBS units south of Kodiak Island for 2 months in the summer of 1979. Despite a relatively short operation time and various instrument malfunctions, the combined network detected 19 locatable earthquakes in the shelf region. Because of the structural heterogeneity of this area, the earthquakes were located with a scheme which allowed different velocity models to be used for travel-time calculations of phases traveling to different stations in the network. The locations of earthquakes determined using data from both land and OBS networks were displaced about 12 km from the hypocenters of the same earthquakes determined using only land network data. For these events on the continental shelf, azimuthal control of the joint land-OBS network is excellent, and thus the joint land-OBS network locations are considerably more reliable than locations determined with the land network data alone. When the locations of the combined land-OBS network are compared to 15 yr of teleseismic locations reported by the ISC, the center of teleseismic activity appears to be about 20 to 30 km north of the center of activity determined in our study. This difference between locally determined and teleseismically determined location is similar to that observed in other studies of earthquakes and nuclear explosions in the Aleutian arc.


Sign in / Sign up

Export Citation Format

Share Document