scholarly journals The Impact of African Dust on Air Quality in the Caribbean Basin

Eos ◽  
2016 ◽  
Vol 97 ◽  
Author(s):  
Joseph Prospero ◽  
Henry Diaz

Symposium on Airborne Dust, Climate Change, and Human Health; Miami, Florida, 19–21 May 2015

2021 ◽  
Author(s):  
Hongbin Yu ◽  
Qian Tan ◽  
Lillian Zhou ◽  
Yaping Zhou ◽  
Huisheng Bian ◽  
...  

Abstract. This study characterizes a massive African dust intrusion into the Caribbean Basin and southern U.S. in June 2020, which is nicknamed the Godzilla dust plume, using a comprehensive set of satellite and ground-based observations (including MODIS, CALIOP, SEVIRI, AERONET, and EPA Air Quality network) and the NASA GEOS global aerosol transport model. The MODIS data record registered this massive dust intrusion event as the most intense episode over the past two decades. During this event, the aerosol optical depth observed by AERONET and MODIS peaked at 3.5 off the coast of West Africa and 1.8 in the Caribbean Basin. CALIOP observations show that the top of dust plume reached altitudes of 6–8 km in West Africa and descended to about 4 km altitude over the Caribbean Basin and 2 km over the U.S. Gulf coast. The dust plume degraded the air quality in Puerto Rico to the hazardous level, with maximum daily PM10 concentration of 453 μg m−3 recorded on June 23. The dust intrusion into the U.S. raised the PM2.5 concentration on June 27 to a level exceeding the EPA air quality standard in about 40 % of the stations in the southern U.S. Satellite observations reveal that dust emissions from convection-generated haboobs and other sources in West Africa were large albeit not extreme on a daily basis. However, the anomalous strength and northern shift of the North Atlantic Subtropical High (NASH) together with the Azores low formed a closed circulation pattern that allowed for accumulation of the dust near the African coast for about four days. When the NASH was weakened and wandered back to south, the dust outflow region was dominated by a strong African Easterly Jet that rapidly transported the accumulated dust from the coastal region toward the Caribbean Basin, resulting in the record-breaking African dust intrusion. In comparison to satellite observations, the GEOS model well reproduced the MODIS observed tracks of the meandering dust plume as it was carried by the wind systems. However, the model substantially underestimated dust emissions from haboobs and did not lift up enough dust to the middle troposphere for ensuing long-range transport. Consequently, the model largely missed the satellite-observed elevated dust plume along the cross-ocean track and underestimated the dust intrusion into the Caribbean Basin by a factor of more than 4. Modeling improvements need to focus on developing more realistic representations of moist convection, haboobs, and the vertical transport of dust.


Author(s):  
Bing Pu ◽  
Qinjian Jin

AbstractHigh concentrations of dust can affect climate and human health, yet our understanding of extreme dust events is still limited. A record-breaking trans-Atlantic African dust plume occurred during June 14–28, 2020, greatly degrading air quality over large areas of the Caribbean Basin and U.S. Daily PM2.5 concentrations exceeded 50 μg m−3 in several Gulf States, while the air quality index reached unhealthy levels for sensitive groups in more than 11 States. The magnitude and duration of aerosol optical depth over the tropical North Atlantic Ocean were the greatest ever observed during summer over the past 18 years based on satellite retrievals. This extreme trans-Atlantic dust event is associated with both enhanced dust emissions over western North Africa and atmospheric circulation extremes that favor long-range dust transport. An exceptionally strong African easterly jet and associated wave activities export African dust across the Atlantic toward the Caribbean in the middle to lower troposphere, while a westward extension of the North Atlantic subtropical high and a greatly intensified Caribbean low-level jet further transport the descended, shallower dust plume from the Caribbean Basin into the U.S. Over western North Africa, increased dust emissions are associated with strongly enhanced surface winds over dust source regions and reduced vegetation coverage in the western Sahel. While there are large uncertainties associated with assessing future trends in African dust emissions, model-projected atmospheric circulation changes in a warmer future generally favor increased long-range transport of African dust to the Caribbean Basin and the U.S.


2021 ◽  
Vol 21 (16) ◽  
pp. 12359-12383
Author(s):  
Hongbin Yu ◽  
Qian Tan ◽  
Lillian Zhou ◽  
Yaping Zhou ◽  
Huisheng Bian ◽  
...  

Abstract. This study characterizes a massive African dust intrusion into the Caribbean Basin and southern US in June 2020, which is nicknamed the “Godzilla” dust plume, using a comprehensive set of satellite and ground-based observations (including MODIS, CALIOP, SEVIRI, AERONET, and EPA Air Quality network) and the NASA GEOS global aerosol transport model. The MODIS data record registered this massive dust intrusion event as the most intense episode over the past 2 decades. During this event, the aerosol optical depth (AOD) observed by AERONET and MODIS peaked at 3.5 off the coast of West Africa and 1.8 in the Caribbean Basin. CALIOP observations show that the top of the dust plume reached altitudes of 6–8 km in West Africa and descended to about 4 km altitude over the Caribbean Basin and 2 km over the US Gulf of Mexico coast. The dust intrusion event degraded the air quality in Puerto Rico to a hazardous level, with maximum daily PM10 concentration of 453 µg m−3 recorded on 23 June. The dust intrusion into the US raised the PM2.5 concentration on 27 June to a level exceeding the EPA air quality standard in about 40 % of the stations in the southern US. Satellite observations reveal that dust emissions from convection-generated haboobs and other sources in West Africa were large albeit not extreme on a daily basis. However, the anomalous strength and northern shift of the North Atlantic Subtropical High (NASH) together with the Azores low formed a closed circulation pattern that allowed for accumulation of the dust near the African coast for about 4 d. When the NASH was weakened and wandered back to the south, the dust outflow region was dominated by a strong African easterly jet that rapidly transported the accumulated dust from the coastal region toward the Caribbean Basin, resulting in the record-breaking African dust intrusion. In comparison to satellite observations, the GEOS model reproduced the MODIS observed tracks of the meandering dust plume well as it was carried by the wind systems. However, the model substantially underestimated dust emissions from haboobs and did not lift up enough dust to the middle troposphere for ensuing long-range transport. Consequently, the model largely missed the satellite-observed elevated dust plume along the cross-ocean track and underestimated the dust intrusion into the Caribbean Basin by a factor of more than 4. Modeling improvements need to focus on developing more realistic representations of moist convection, haboobs, and the vertical transport of dust.


2017 ◽  
Vol 108 ◽  
pp. 41-50 ◽  
Author(s):  
Jennifer D. Stowell ◽  
Young-min Kim ◽  
Yang Gao ◽  
Joshua S. Fu ◽  
Howard H. Chang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document