scholarly journals Impact of Biodiesel Fuels on Air Quality and Human Health: Task 2 Report; The Impact of Biodiesel Fuels on Ozone Concentrations

2003 ◽  
Author(s):  
R. E. Morris ◽  
G. E. Mansell ◽  
Y. Jia ◽  
G. Wilson
2012 ◽  
Vol 12 (6) ◽  
pp. 14525-14549
Author(s):  
T. M. Thompson ◽  
N. E. Selin

Abstract. We use regional air quality modeling to evaluate the impact of model resolution on uncertainty associated with the human health benefits resulting from proposed air quality regulations. Using a regional photochemical model (CAMx), we ran a modeling episode with meteorological inputs representing conditions as they occurred during August through September 2006, and two emissions inventories (a 2006 base case and a 2018 proposed control scenario, both for Houston, Texas) at 36, 12, 4 and 2 km resolution. The base case model performance was evaluated for each resolution against daily maximum 8-h averaged ozone measured at monitoring stations. Results from each resolution were more similar to each other than they were to measured values. Population-weighted ozone concentrations were calculated for each resolution and applied to concentration response functions (with 95% confidence intervals) to estimate the health impacts of modeled ozone reduction from the base case to the control scenario. We found that estimated avoided mortalities were not significantly different between 2, 4 and 12 km resolution runs, but 36 km resolution may over-predict some potential health impacts. Given the cost/benefit analysis requirements of the Clean Air Act, the uncertainty associated with human health impacts and therefore the results reported in this study, we conclude that health impacts calculated from population weighted ozone concentrations obtained using regional photochemical models at 36 km resolution fall within the range of values obtained using fine (12 km or finer) resolution modeling. However, in some cases, 36 km resolution may not be fine enough to statistically replicate the results achieved using 2 and 4 km resolution. On average, when modeling at 36 km resolution, 7 deaths per ozone month were avoided because of ozone reductions resulting from the proposed emissions reductions (95% confidence interval was 2–9). When modeling at 2, 4 or 12 km finer scale resolution, on average 5 deaths were avoided due to the same reductions (95% confidence interval was 2–7). Initial results for this specific region show that modeling at a resolution finer than 12 km is unlikely to improve uncertainty in benefits analysis. We suggest that 12 km resolution may be appropriate for uncertainty analyses in areas with similar chemistry, but that resolution requirements should be assessed on a case-by-case basis and revised as confidence intervals for concentration-response functions are updated.


2012 ◽  
Vol 12 (20) ◽  
pp. 9753-9762 ◽  
Author(s):  
T. M. Thompson ◽  
N. E. Selin

Abstract. We use regional air quality modeling to evaluate the impact of model resolution on uncertainty associated with the human health benefits resulting from proposed air quality regulations. Using a regional photochemical model (CAMx), we ran a modeling episode with meteorological inputs simulating conditions as they occurred during August through September 2006 (a period representative of conditions leading to high ozone), and two emissions inventories (a 2006 base case and a 2018 proposed control scenario, both for Houston, Texas) at 36, 12, 4 and 2 km resolution. The base case model performance was evaluated for each resolution against daily maximum 8-h averaged ozone measured at monitoring stations. Results from each resolution were more similar to each other than they were to measured values. Population-weighted ozone concentrations were calculated for each resolution and applied to concentration response functions (with 95% confidence intervals) to estimate the health impacts of modeled ozone reduction from the base case to the control scenario. We found that estimated avoided mortalities were not significantly different between the 2, 4 and 12 km resolution runs, but the 36 km resolution may over-predict some potential health impacts. Given the cost/benefit analysis requirements motivated by Executive Order 12866 as it applies to the Clean Air Act, the uncertainty associated with human health impacts and therefore the results reported in this study, we conclude that health impacts calculated from population weighted ozone concentrations obtained using regional photochemical models at 36 km resolution fall within the range of values obtained using fine (12 km or finer) resolution modeling. However, in some cases, 36 km resolution may not be fine enough to statistically replicate the results achieved using 2, 4 or 12 km resolution. On average, when modeling at 36 km resolution, an estimated 5 deaths per week during the May through September ozone season are avoided because of ozone reductions resulting from the proposed emissions reductions (95% confidence interval was 2–8). When modeling at 2, 4 or 12 km finer scale resolution, on average 4 deaths are avoided due to the same reductions (95% confidence interval was 1–7). Study results show that ozone modeling at a resolution finer than 12 km is unlikely to reduce uncertainty in benefits analysis for this specific region. We suggest that 12 km resolution may be appropriate for uncertainty analyses of health impacts due to ozone control scenarios, in areas with similar chemistry, meteorology and population density, but that resolution requirements should be assessed on a case-by-case basis and revised as confidence intervals for concentration-response functions are updated.


2021 ◽  
Author(s):  
Carla Gama ◽  
Alexandra Monteiro ◽  
Myriam Lopes ◽  
Ana Isabel Miranda

<p>Tropospheric ozone (O<sub>3</sub>) is a critical pollutant over the Mediterranean countries, including Portugal, due to systematic exceedances to the thresholds for the protection of human health. Due to the location of Portugal, on the Atlantic coast at the south-west point of Europe, the observed O<sub>3</sub> concentrations are very much influenced not only by local and regional production but also by northern mid-latitudes background concentrations. Ozone trends in the Iberian Peninsula were previously analysed by Monteiro et al. (2012), based on 10-years of O<sub>3</sub> observations. Nevertheless, only two of the eleven background monitoring stations analysed in that study are located in Portugal and these two stations are located in Porto and Lisbon urban areas. Although during pollution events O<sub>3</sub> levels in urban areas may be high enough to affect human health, the highest concentrations are found in rural locations downwind from the urban and industrialized areas, rather than in cities. This happens because close to the sources (e.g., in urban areas) freshly emitted NO locally scavenges O<sub>3</sub>. A long-term study of the spatial and temporal variability and trends of the ozone concentrations over Portugal is missing, aiming to answer the following questions:</p><p>-           What is the temporal variability of ozone concentrations?</p><p>-           Which trends can we find in observations?</p><p>-           How were the ozone spring maxima concentrations affected by the COVID-19 lockdown during spring 2020?</p><p>In this presentation, these questions will be answered based on the statistical analysis of O<sub>3</sub> concentrations recorded within the national air quality monitoring network between 2005 and 2020 (16 years). The variability of the surface ozone concentrations over Portugal, on the timescales from diurnal to annual, will be presented and discussed, taking into account the physical and chemical processes that control that variability. Using the TheilSen function from the OpenAir package for R (Carslaw and Ropkins 2012), which quantifies monotonic trends and calculates the associated p-value through bootstrap simulations, O<sub>3</sub> concentration long-term trends will be estimated for the different regions and environments (e.g., rural, urban).  Moreover, taking advantage of the unique situation provided by the COVID-19 lockdown during spring 2020, when the government imposed mandatory confinement and citizens movement restriction, leading to a reduction in traffic-related atmospheric emissions, the role of these emissions on ozone levels during the spring period will be studied and presented.</p><p> </p><p>Carslaw and Ropkins, 2012. Openair—an R package for air quality data analysis. Environ. Model. Softw. 27-28,52-61. https://doi.org/10.1016/j.envsoft.2011.09.008</p><p>Monteiro et al., 2012. Trends in ozone concentrations in the Iberian Peninsula by quantile regression and clustering. Atmos. Environ. 56, 184-193. https://doi.org/10.1016/j.atmosenv.2012.03.069</p>


2020 ◽  
Vol 7 (2) ◽  
pp. 84-94
Author(s):  
Mirela Poljanac

Wood burning in residential appliances is very represented in the Republic of Croatia. It is a main or an additional form of heating for many households in rural and urban areas and is therefore an important source of air pollution. The choice of energy and the combustion appliance used in home have a significant impact on PM2.5 emissions. The paper informs the reader about PM2.5 emissions, their main sources and impacts on human health, environment, climate, air quality, and the reason why PM2.5 emissions from residential wood burning are harmful. Paper also gives an overview of spatial PM2.5 emission distribution in Croatia, their five air quality zones and four agglomerations. The paper analyses the sources and their contribution to PM2.5 emissions with the relevance of PM2.5 emissions from residential plants, the use of fuels in residential plants and their contribution to PM2.5 emissions and PM2.5 emissions by fuel combustion technologies in residential sector. Appropriate strategies, policies, and actions to reduce the impact of residential biomass (wood) burning on the environment, air quality and human health are considered.


2016 ◽  
Vol 11 (2) ◽  
pp. 024010 ◽  
Author(s):  
S T Turnock ◽  
E W Butt ◽  
T B Richardson ◽  
G W Mann ◽  
C L Reddington ◽  
...  

2019 ◽  
Vol 30 (3) ◽  
pp. 23-28
Author(s):  
Kinga Makuch

Abstract The article focuses on the selected aspects of introducing a resolution by a self-government of a province, which allows to determine the acceptable types and quality of fuels. The impact of polluted air on human health is significant. The actions carried out by the local authorities should be aimed on seeking effective air protection remedies; nonetheless, the scale of these activities seems to be still insignificant. One of the legal mechanisms is introducing resolutions determining the acceptable types and quality of fuels by a self-government of a province in order to protect the health of Polish residents and reduce the negative impact of air pollution on the environment. The question, however, is whether such resolutions could be audited with respect to the execution of such a resolution and whether they effectively lead to air quality improvement.


2011 ◽  
Vol 20 (1) ◽  
Author(s):  
C.Y Wright ◽  
R Oosthuizen ◽  
J John ◽  
R.M Garland ◽  
P Albers ◽  
...  

Human exposure to poor air quality is linked to adverse health effects. The largest burden of air pollution-related diseases is in developing countries where air pollution levels are also among the highest in the world. In South Africa, two geographic areas, the Vaal Triangle and the Highveld, have been identified for air quality managementinterventions to ensure compliance with National Air Quality Management Standards and to control potential harmful air pollution impacts on human health. The Highveld Priority Area (HPA) is characterised by intense mining, coal-fired power plants, industries, including iron and steel manufacturing, chemical plants, agricultural activity, motor vehicles and domestic fuel burning. Apart from two previous studies, no respiratory health studies have been carried out in the HPA. This paper describes the results of a recent, comprehensive study of ambient air quality, potential exposure to air pollution and air-related human health among a low income community living in the HPA in order to better understand the impact of air pollution on human health in South Africa.


2018 ◽  
Vol 18 (13) ◽  
pp. 9741-9765 ◽  
Author(s):  
Emmanouil Oikonomakis ◽  
Sebnem Aksoyoglu ◽  
Martin Wild ◽  
Giancarlo Ciarelli ◽  
Urs Baltensperger ◽  
...  

Abstract. Surface solar radiation (SSR) observations have indicated an increasing trend in Europe since the mid-1980s, referred to as solar “brightening”. In this study, we used the regional air quality model, CAMx (Comprehensive Air Quality Model with Extensions) to simulate and quantify, with various sensitivity runs (where the year 2010 served as the base case), the effects of increased radiation between 1990 and 2010 on photolysis rates (with the PHOT1, PHOT2 and PHOT3 scenarios, which represented the radiation in 1990) and biogenic volatile organic compound (BVOC) emissions (with the BIO scenario, which represented the biogenic emissions in 1990), and their consequent impacts on summer surface ozone concentrations over Europe between 1990 and 2010. The PHOT1 and PHOT2 scenarios examined the effect of doubling and tripling the anthropogenic PM2.5 concentrations, respectively, while the PHOT3 investigated the impact of an increase in just the sulfate concentrations by a factor of 3.4 (as in 1990), applied only to the calculation of photolysis rates. In the BIO scenario, we reduced the 2010 SSR by 3 % (keeping plant cover and temperature the same), recalculated the biogenic emissions and repeated the base case simulations with the new biogenic emissions. The impact on photolysis rates for all three scenarios was an increase (in 2010 compared to 1990) of 3–6 % which resulted in daytime (10:00–18:00 Local Mean Time – LMT) mean surface ozone differences of 0.2–0.7 ppb (0.5–1.5 %), with the largest hourly difference rising as high as 4–8 ppb (10–16 %). The effect of changes in BVOC emissions on daytime mean surface ozone was much smaller (up to 0.08 ppb, ∼ 0.2 %), as isoprene and terpene (monoterpene and sesquiterpene) emissions increased only by 2.5–3 and 0.7 %, respectively. Overall, the impact of the SSR changes on surface ozone was greater via the effects on photolysis rates compared to the effects on BVOC emissions, and the sensitivity test of their combined impact (the combination of PHOT3 and BIO is denoted as the COMBO scenario) showed nearly additive effects. In addition, all the sensitivity runs were repeated on a second base case with increased NOx emissions to account for any potential underestimation of modeled ozone production; the results did not change significantly in magnitude, but the spatial coverage of the effects was profoundly extended. Finally, the role of the aerosol–radiation interaction (ARI) changes in the European summer surface ozone trends was suggested to be more important when comparing to the order of magnitude of the ozone trends instead of the total ozone concentrations, indicating a potential partial damping of the effects of ozone precursor emissions' reduction.


Sign in / Sign up

Export Citation Format

Share Document