scholarly journals Precipitation Data Key to Food Security and Public Health

Eos ◽  
2016 ◽  
Vol 97 ◽  
Author(s):  
Dalia Kirschbaum ◽  
Kasha Patel

2015 Global Precipitation Measurement (GPM) Mission Applications Workshop; Hyattsville, Maryland, 9–10 June 2015

2011 ◽  
Vol 28 (3) ◽  
pp. 301-319 ◽  
Author(s):  
Mathew R. Schwaller ◽  
K. Robert Morris

Abstract A prototype Validation Network (VN) is currently operating as part of the Ground Validation System for NASA’s Global Precipitation Measurement (GPM) mission. The VN supports precipitation retrieval algorithm development in the GPM prelaunch era. Postlaunch, the VN will be used to validate GPM spacecraft instrument measurements and retrieved precipitation data products. The period of record for the VN prototype starts on 8 August 2006 and runs to the present day. The VN database includes spacecraft data from the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and coincident ground radar (GR) data from operational meteorological networks in the United States, Australia, Korea, and the Kwajalein Atoll in the Marshall Islands. Satellite and ground radar data products are collected whenever the PR satellite track crosses within 200 km of a VN ground radar, and these data are stored permanently in the VN database. VN products are generated from coincident PR and GR observations when a significant rain event occurs. The VN algorithm matches PR and GR radar data (including retrieved precipitation data in the case of the PR) by calculating averages of PR reflectivity (both raw and attenuation corrected) and rain rate, and GR reflectivity at the geometric intersection of the PR rays with the individual GR elevation sweeps. The algorithm thus averages the minimum PR and GR sample volumes needed to “matchup” the spatially coincident PR and GR data types. The result of this technique is a set of vertical profiles for a given rainfall event, with coincident PR and GR samples matched at specified heights throughout the profile. VN data can be used to validate satellite measurements and to track ground radar calibration over time. A comparison of matched TRMM PR and GR radar reflectivity factor data found a remarkably small difference between the PR and GR radar reflectivity factor averaged over this period of record in stratiform and convective rain cases when samples were taken from high in the atmosphere. A significant difference in PR and GR reflectivity was found in convective cases, particularly in convective samples from the lower part of the atmosphere. In this case, the mean difference between PR and corrected GR reflectivity was −1.88 dBZ. The PR–GR bias was found to increase with the amount of PR attenuation correction applied, with the PR–GR bias reaching −3.07 dBZ in cases where the attenuation correction applied is >6 dBZ. Additional analysis indicated that the version 6 TRMM PR retrieval algorithm underestimates rainfall in case of convective rain in the lower part of the atmosphere by 30%–40%.


2017 ◽  
Vol 98 (8) ◽  
pp. 1679-1695 ◽  
Author(s):  
Gail Skofronick-Jackson ◽  
Walter A. Petersen ◽  
Wesley Berg ◽  
Chris Kidd ◽  
Erich F. Stocker ◽  
...  

Abstract Precipitation is a key source of freshwater; therefore, observing global patterns of precipitation and its intensity is important for science, society, and understanding our planet in a changing climate. In 2014, the National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA) launched the Global Precipitation Measurement (GPM) Core Observatory (CO) spacecraft. The GPM CO carries the most advanced precipitation sensors currently in space including a dual-frequency precipitation radar provided by JAXA for measuring the three-dimensional structures of precipitation and a well-calibrated, multifrequency passive microwave radiometer that provides wide-swath precipitation data. The GPM CO was designed to measure rain rates from 0.2 to 110.0 mm h−1 and to detect moderate to intense snow events. The GPM CO serves as a reference for unifying the data from a constellation of partner satellites to provide next-generation, merged precipitation estimates globally and with high spatial and temporal resolutions. Through improved measurements of rain and snow, precipitation data from GPM provides new information such as details on precipitation structure and intensity; observations of hurricanes and typhoons as they transition from the tropics to the midlatitudes; data to advance near-real-time hazard assessment for floods, landslides, and droughts; inputs to improve weather and climate models; and insights into agricultural productivity, famine, and public health. Since launch, GPM teams have calibrated satellite instruments, refined precipitation retrieval algorithms, expanded science investigations, and processed and disseminated precipitation data for a range of applications. The current status of GPM, its ongoing science, and its future plans are presented.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Wei Sun ◽  
Yonghua Sun ◽  
Xiaojuan Li ◽  
Tao Wang ◽  
Yanbing Wang ◽  
...  

Accurate remote-sensed precipitation data are crucial to the effective monitoring and analysis of floods and climate change. The Global Precipitation Measurement (GPM) satellite product offers new options for the global study of precipitation. This paper evaluates the applicability of GPM IMERG products at different time resolutions in comparison to ground-measured data. Based on precipitation data from 107 meteorological stations in the Beijing-Tianjin-Hebei region, GPM products were analysed at three timescales: half-hourly (GPM-HH), daily (GPM-D), and monthly (GPM-M). We use a cumulative distribution function (CDF) model to correct GPM-D and GPM-M products to analyse temporal and spatial distributions of precipitation. We came to the following conclusions: (1) The GPM-M product is strongly correlated with ground station data. Based on five evaluation indexes, NRMSE (Normalized Root Mean Square Error), NSE (Nash-Sutcliffe), FAR (False Alarm Ratio), UR (Underreporting Rate), and CSI (Critical Success Index), the monthly GPM products showed the best performance, better than GPM-HH products and GPM-D products. (2) The performance of GPM products in summer and autumn was better than in winter and spring. However, the GPM satellite’s precision in undulating terrain was poor, which could easily lead to serious errors. (3) CDF models were successfully used to modify GPM-D and GPM-M products and improve their accuracy. (4) The range of 0–100 mm precipitation could be corrected best, but the GPM-M products were underestimated. Corrected GPM-M data in the range >100 mm were overestimated. According to this analysis, the GPM IMERG Final Run products at daily and monthly timescales have good detection ability and can provide data support for long-time series analyses in the Beijing-Tianjin-Hebei region.


2021 ◽  
Author(s):  
Jiseob Kim ◽  
Dong-Bin Shin

<p>Spaceborne passive microwave sensors have been developed to improve the knowledge of precipitation systems based on channels that interact directly with hydrometeors in clouds. In particular, understanding the global distribution of precipitation is one of the main missions. Prior to these precipitation studies, many researchers tend to implement the rain/no-rain classification (RNC) procedure. As a simple way, the polarized corrected temperature at 89 GHz (PCT89) from passive microwave radiometry has been widely used to identify rain pixels. The PCT89 can estimate the scattering intensity accompanied by precipitating clouds while minimizing the effects of the surface at high resolution, however, the diversity of the hydrometeor distributions can be a problem in the use of a consistent cut-off threshold. Therefore, the purpose of this study is to evaluate differences in the accuracy of the PCT-based RNC method induced by the various hydrometeor distributions and to present a new perspective to users so that it can be used appropriately. Precipitation data observed by the global precipitation measurement (GPM) microwave imager (GMI) for the period from January to December of 2015 in the tropics were used in the study. Based on the classification algorithm of the GPM dual precipitation radar (DPR), the precipitation data were subdivided into 11 types (3 stratiform types, 4 convective types, and others), and then a statistical verification was attempted to ensure that the cut-off threshold was appropriate. The PCT89-based RNC method leads to an increase of 70% and 54% in the number of two significant stratiform types compared to the DPR precipitation flag. On the other hand, the convective types decreased by up to 53%. Although regional diversity could lead to systematic differences in the verification, they did not exceed magnitudes of the difference between precipitation types. Therefore, this study suggests that the precipitations identified by the PCT89-based RNC method have features that enhance the bias toward the stratiform type.</p>


2019 ◽  
Vol 3 ◽  
pp. 1063
Author(s):  
Fatkhuroyan Fatkhuroyan

Satelit GPM (Global Precipitation Measurement) merupakan proyek kerjasama antara NASA (National Aeronautics and Space Administration) dan JAXA (Japan Aerospace Exploration Agency) serta lembaga internasional lainnya untuk membuat satelit generasi terbaru dalam rangka pengamatan curah hujan di bumi sejak 2014. Model Cuaca WRF (Weather Research and Forecasting) merupakan model cuaca numerik yang telah dipakai oleh BMKG (Badan Meteorologi Klimatologi dan Geofisika) untuk pelayan prediksi cuaca harian kepada masyarakat. Pada tanggal 27 November – 3 Desember 2017 telah terjadi bencana alam siklon tropis Cempaka dan Dahlia di samudra Hindia sebelah selatan pulau Jawa. Tujuan Penelitian ialah untuk mengetahui sebaran akumulasi curah hujan antara observasi satelit GPM dan model cuaca WRF, serta keakuratan model WRF terhadap observasi satelit GPM saat terjadinya bencana alam tersebut. Metode yang dipakai ialah dengan melakukan analisa meteorologi pertumbuhan terjadinya siklon tropis tersebut hingga terjadinya hujan sangat lebat secara temporal maupun spasial. Dari hasil analisa disimpulkan bahwa satelit GPM memiliki luasan sebaran curah hujan yang lebih kecil daripada sebaran hujan model cuaca WRF pada saat siklon tropis Cempaka dan Dahlia. Bias akumulasi sebaran hujan model cuaca WRF juga cukup bagus terhadap satelit GPM sehingga dapat dilakukan antisipasi dampak hujan lebat yang terjadi.


2021 ◽  
Vol 13 (9) ◽  
pp. 1745
Author(s):  
Jianxin Wang ◽  
Walter A. Petersen ◽  
David B. Wolff

The global precipitation measurement mission (GPM) has been in operation for seven years and continues to provide a vast quantity of global precipitation data at finer temporospatial resolutions with improved accuracy and coverage. GPM’s signature algorithm, the integrated multisatellite retrievals for GPM (IMERG) is a next-generation of precipitation product expected for wide variety of research and operational applications. This study evaluates the latest version (V06B) of IMERG and its predecessor, the tropical rainfall measuring mission (TRMM) multisatellite precipitation (TMPA) 3B42 (V7) using ground-based and gauge-corrected multiradar multisensor system (MRMS) precipitation products over the conterminous United States (CONUS). The spatial distributions of all products are analyzed. The error characteristics are further examined for 3B42 and IMERG in winter and summer by an error decomposition approach, which partitions total bias into hit bias, biases due to missed precipitation and false precipitation. The volumetric and categorical statistical metrics are used to quantitatively evaluate the performance of the two satellite-based products. All products show a similar precipitation climatology with some regional differences. The two satellite-based products perform better in the eastern CONUS than in the mountainous Western CONUS. The evaluation demonstrates the clear improvement in IMERG precipitation product in comparison with its predecessor 3B42, especially in reducing missed precipitation in winter and summer, and hit bias in winter, resulting in better performance in capturing lighter and heavier precipitation.


Sign in / Sign up

Export Citation Format

Share Document