japan aerospace exploration agency
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 22)

H-INDEX

6
(FIVE YEARS 2)

Aerospace ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 287
Author(s):  
Hirotaka Otsu

For most re-entry capsules, the shape of the forebody of the capsule is designed based on the blunted nose cone. A similar shape can be created using a hyperboloid of revolution that can control the nose bluntness and the half angle of the cone easily. In this study, the hypersonic aerodynamic characteristics of re-entry capsules designed with hyperbolic contours were investigated using the CFD code, FaSTAR, developed by Japan Aerospace Exploration Agency (JAXA). The CFD results showed that, using the hyperbolic contours, the drag and lift coefficients can be increased compared to those for the Hayabusa re-entry capsule without changing the shape of the capsule drastically. This suggests that shape design based on the hyperbolic contours can improve the aerodynamic characteristics of re-entry capsules.


2021 ◽  
Author(s):  
Earl Duque ◽  
Steve Legensky ◽  
Brad Whitlock ◽  
David Rogers ◽  
Andrew Bauer ◽  
...  

At the AIAA SciTech 2020 conference, the Meshing, Visualization and Computational Environments Technical Committee hosted a special technical panel on In Situ/In Transit Computational Environments for Visualization and Data Analytics. The panel brought together leading experts from industry, software vendors, Department of Energy, Department of Defense and the Japan Aerospace Exploration Agency (JAXA). In situ and in transit methodologies enable Computational Fluid Dynamic (CFD) simulations to avoid the excessive overhead associated with data I/O at large scales especially as simulations scale to millions of processors. These methods either share the data analysis/visualization pipelines with the memory space of the solver or efficiently off load the workload to alternate processors. Using these methods, simulations can scale and have the promise of enabling the community to satisfy the Knowledge Extraction milestones as envisioned by the CFD Vision 2030 study for "on demand analysis/visualization of a 100 Billion point unsteady CFD simulation". This paper summarizes the presentations providing a discussion point of how the community can achieve the goals set forth in the CFD Vision 2030.


2021 ◽  
Author(s):  
Yoji Okita ◽  
Hisao Futamura ◽  
Takashi Yamane ◽  
Masaya Suzuki ◽  
Nozomi Tanaka ◽  
...  

Abstract This paper reports a new turbine research facility that was recently completed in Japan Aerospace Exploration Agency (JAXA). The facility is a full annular rotating transonic turbine rig that allows a continuous operation of scaled and/or full-scale axial HPT or LPT. The rig design was especially focused on the ability of simulating the aerodynamic and thermal interaction between main gas paths and various / massive secondary air flows at conditions of dominant aero-heat parameters well matched to those of modern aero-engines. Cooling air can be delivered to the airfoils of vanes/blades and the endwalls separately at a massflow range covering the typical conditions. Rotor forward and aft purge air as well as through-casing cooling air can be injected with each flowrate independently controlled. The facility, which has significant capabilities with several large compressors of 10MW in total, 5MW mainflow heater, 6MW drive motor/generator, etc., can be applied to a very wide range of turbine designs. A series of shakedown testing has been carried out since the completion of construction in 2019. The commissioning phase of the rig will complete in early 2021 and then the rig will enter service. The very first test with a scaled HPT is planned to start in the last quarter of 2021.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Wataru Fujiya ◽  
Yoshihiro Furukawa ◽  
Haruna Sugahara ◽  
Mizuho Koike ◽  
Ken-ichi Bajo ◽  
...  

AbstractJapan Aerospace Exploration Agency (JAXA) will launch a spacecraft in 2024 for a sample return mission from Phobos (Martian Moons eXploration: MMX). Touchdown operations are planned to be performed twice at different landing sites on the Phobos surface to collect > 10 g of the Phobos surface materials with coring and pneumatic sampling systems on board. The Sample Analysis Working Team (SAWT) of MMX is now designing analytical protocols of the returned Phobos samples to shed light on the origin of the Martian moons as well as the evolution of the Mars–moon system. Observations of petrology and mineralogy, and measurements of bulk chemical compositions and stable isotopic ratios of, e.g., O, Cr, Ti, and Zn can provide crucial information about the origin of Phobos. If Phobos is a captured asteroid composed of primitive chondritic materials, as inferred from its reflectance spectra, geochemical data including the nature of organic matter as well as bulk H and N isotopic compositions characterize the volatile materials in the samples and constrain the type of the captured asteroid. Cosmogenic and solar wind components, most pronounced in noble gas isotopic compositions, can reveal surface processes on Phobos. Long- and short-lived radionuclide chronometry such as 53Mn–53Cr and 87Rb–87Sr systematics can date pivotal events like impacts, thermal metamorphism, and aqueous alteration on Phobos. It should be noted that the Phobos regolith is expected to contain a small amount of materials delivered from Mars, which may be physically and chemically different from any Martian meteorites in our collection and thus are particularly precious. The analysis plan will be designed to detect such Martian materials, if any, from the returned samples dominated by the endogenous Phobos materials in curation procedures at JAXA before they are processed for further analyses.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Satoshi Furukawa ◽  
Masahiro Chatani ◽  
Atsushi Higashitani ◽  
Akira Higashibata ◽  
Fuminori Kawano ◽  
...  

AbstractThe musculoskeletal system provides the body with correct posture, support, stability, and mobility. It is composed of the bones, muscles, cartilage, tendons, ligaments, joints, and other connective tissues. Without effective countermeasures, prolonged spaceflight under microgravity results in marked muscle and bone atrophy. The molecular and physiological mechanisms of this atrophy under unloaded conditions are gradually being revealed through spaceflight experiments conducted by the Japan Aerospace Exploration Agency using a variety of model organisms, including both aquatic and terrestrial animals, and terrestrial experiments conducted under the Living in Space project of the Japan Ministry of Education, Culture, Sports, Science, and Technology. Increasing our knowledge in this field will lead not only to an understanding of how to prevent muscle and bone atrophy in humans undergoing long-term space voyages but also to an understanding of countermeasures against age-related locomotive syndrome in the elderly.


2021 ◽  
Vol 33 (2) ◽  
pp. 348-362
Author(s):  
Atsushi Oosedo ◽  
◽  
Hiroaki Hattori ◽  
Ippei Yasui ◽  
Kenya Harada

An unmanned aircraft system traffic management (UTM) system to support flights beyond visual line-of-sight is considered necessary for the promotion of commercial drone use. In the research and development of UTM systems, cost and time constraints make it difficult to actually fly a large number of drones in the same airspace, so research is mainly conducted using a simulator. This paper presents details of a UTM simulator named the “scalable simulator for knowledge of low-altitude environment” (SKALE) developed by the Japan Aerospace Exploration Agency (JAXA), with respect to the construction of a model case of drone delivery model set in 2030 in Japan. Moreover, UTM concepts for airspace safety and efficient airspace utilization (parcel transport) are proposed and evaluated using JAXA’s UTM simulator and drone delivery model cases. Simulation results are discussed, and the knowledge gained for the improvement of airspace safety and airspace utilization (parcel transport) efficiency is documented.


2021 ◽  
Author(s):  
Shin-ich Sobue ◽  
Takeo Tadono ◽  
Satoko Miura ◽  
Akiko Noda ◽  
Takeshi Motooka ◽  
...  

<p>Japan Aerospace Exploration Agency (JAXA) launched its first L-band SAR mission - Japanese Earth Resources Satellite (JERS-1) in 1992. Though the design life of JERS-1 was 2 years, the satellite had obtained observational data for more than 6 years and ended the mission in 1998. Following to JERS-1, Advanced Land Observing Satellite (ALOS) was launched in 2006. ALOS was equipped with three sensors: the Phased Array type L-band SAR (PALSAR), the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM), and the Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2). ALOS's observation data has been used in various areas including disaster mitigation through observing regions damaged by earthquakes, tsunami, or typhoons, as well as carrying out forest monitoring, natural environment maintenance, agriculture, and compiling a 1/25,000 topographical map. When the Great East Japan Earthquake hit Japan in 2011, ALOS took some 400 images over disaster-stricken areas to provide information to all parties concerned.</p><p>Technologies acquired from the ALOS are succeeded to the second Advanced Land Observing Satellite “ALOS-2.”, which was successfully launched on 24th May 2014. The mission sensor of ALOS-2 is the Phased Array type L-band Synthetic Aperture Radar-2 called PALSAR-2 which is the state-of-the-art L-band SAR system. Until now after the successful completion of initial checkout after launching, ALOS-2 has been contributed to a lot of emergency observations for natural disasters, not only in Japan but also in the world. Furthermore, based on the Basic Observation Scenario (BOS) of ALOS-2, 10m global map data and other mode data are routinely collected and archived. This paper describes the results of ALOS-2 operation in nominal operation phase and outline of future ALOS series missions, especially ALOS-4 launched JFY2022.</p>


2021 ◽  
Author(s):  
Kiyoshi Kuramoto ◽  
Yasuhiro Kawakatsu ◽  
Masaki Fujimoto ◽  
Akito Araya ◽  
Maria Antonietta Barucci ◽  
...  

Abstract Martian moons exploration, MMX, is the new sample return mission planned by the Japan Aerospace Exploration Agency (JAXA) targeting the two Martian moons with a scheduled launch in 2024 and a return to the Earth in 2029. The major scientific objectives of this mission are to determine the origin of Phobos and Deimos, to elucidate the early Solar System evolution in terms of volatile delivery across the snow line to the terrestrial planets having habitable surface environments, and to explore the evolutionary processes of both moons and Mars surface environment. To achieve these objectives, during a stay in circum-Martian space over about 3 years MMX will collect samples from Phobos along with close-up observations of this inner moon and carry out multiple flybys of Deimos to make comparative observations of this outer moon. Simultaneously, successive observations of the Martian atmosphere will also be made by utilizing the advantage of quasi-equatorial spacecraft orbits along the moons’ orbits.


2020 ◽  
Author(s):  
Wataru Fujiya ◽  
Yoshihiro Furukawa ◽  
Haruna Sugahara ◽  
Mizuho Koike ◽  
Ken-ichi Bajo ◽  
...  

Abstract Japan Aerospace Exploration Agency (JAXA) will launch a spacecraft in 2024 for a sample return mission from Phobos (Martian Moons eXploration: MMX). Touchdown operations are planned to be performed twice at different landing sites on the Phobos surface to collect >10 g of the Phobos surface materials with coring and pneumatic sampling systems on board. The Sample Analysis Working Team (SAWT) of MMX is now designing analytical protocols of the returned Phobos samples to shed light on the origin of the Martian moons as well as the evolution of the Mars-moon system. Observations of petrology and mineralogy, and measurements of bulk chemical compositions and stable isotopic ratios of, e.g., O, Cr, and Ti can provide crucial information about the origin of Phobos. If Phobos is a captured asteroid composed of primitive chondritic materials, as inferred from its reflectance spectra, the nature of organic matter as well as bulk H, N, and Zn isotopic compositions characterize the volatile materials in the samples and constrain the type of the captured asteroid. Cosmogenic and solar wind components, most pronounced in noble gas isotopic compositions, can reveal surface processes on Phobos. Long- and short-lived radionuclide chronometry such as 53Mn-53Cr and 87Rb-87Sr systematics can date pivotal events like impacts, thermal metamorphism, and aqueous alteration on Phobos. It should be noted that the Phobos regolith is expected to contain a small amount of materials delivered from Mars, which may be physically and chemically different from any Martian meteorites in our collection and thus are particularly precious. The analysis plan will be designed to detect such Martian materials, if any, from the returned samples dominated by the Phobos building blocks in curation procedures at JAXA before they are processed for further analyses.


2020 ◽  
Author(s):  
Naomi Murdoch ◽  
Patrick Michel ◽  
Stephan Ulamec ◽  
Matthias Grott ◽  
Ute Böttger ◽  
...  

<p>The Japan Aerospace Exploration Agency, JAXA, Martians Moons eXploration (MMX) mission will investigate the Martian Moons Phobos and Deimos, and return samples from Phobos to Earth. As part of this mission a small (~25 kg) rover, contributed by the Centre National d’Etudes Spatiales (CNES) and the German Aerospace Center (DLR), with additional contributions from INTA (Spain) and JAXA, will be delivered to the surface of Phobos. The rover will demonstrate the technology of locomotion on a regolith-covered, low gravity planetary surface. In addition, the rover will provide scientific data on the regolith properties (mechanical, mineralogical and thermal), provide ground truth for the MMX orbiter instruments, give context information for the returned samples, and contribute to reducing the risk of the landing and sampling operations of the MMX mission.</p> <p>In order to achieve these goals, the rover has a small suite of scientific instruments: a Raman spectrometer (RAX) to measure the mineralogical composition of the surface material, a radiometer (miniRAD) to measure the surface brightness temperature and determine thermal properties of both regolith and rocks (if in the field of view), a stereo pair of navigation cameras looking forwards (NAVCam) that will place constraints on the level of heterogeneity of the regolith both in terms of composition and space weathering alteration, and two cameras looking at the interface between wheel and surface (WheelCam). The WheelCams will observe the properties of the regolith compaction and flow around the wheels, and the resulting trenches in order to characterise the mechanical properties of the regolith itself.</p> <p>The MMX rover will be deployed from the main spacecraft from an altitude of less than 100 m above the surface of Phobos. The uprighting and deployment (legs/wheels and solar panels) sequences will be performed automatically once the rover comes to rest on the surface. The rover will then operate for 100 days covering a total distance of several meters to hundreds of meters.</p> <p>The MMX launch is currently planned for late 2024 with the Mars orbit insertion occurring in 2025, and the rover delivery and operations in 2026 or 2027.</p> <p>This presentation will provide an overview of the MMX rover and the expected science return from each of the four instruments.</p>


Sign in / Sign up

Export Citation Format

Share Document