scholarly journals High-Resolution Ocean Model Captures Large-Scale Heat Transport

Eos ◽  
2016 ◽  
Author(s):  
Sarah Stanley

A lower-resolution model is sufficient to capture air-sea interactions, but a high-resolution model better simulates average sea surface temperatures in the North Atlantic.

2019 ◽  
Vol 49 (5) ◽  
pp. 1159-1181 ◽  
Author(s):  
Christopher Danek ◽  
Patrick Scholz ◽  
Gerrit Lohmann

AbstractThe influence of a high horizontal resolution (5–15 km) on the general circulation and hydrography in the North Atlantic is investigated using the Finite Element Sea Ice–Ocean Model (FESOM). We find a stronger shift of the upper-ocean circulation and water mass properties during the model spinup in the high-resolution model version compared to the low-resolution (~1°) control run. In quasi equilibrium, the high-resolution model is able to reduce typical low-resolution model biases. Especially, it exhibits a weaker salinification of the North Atlantic subpolar gyre and a reduced mixed layer depth in the Labrador Sea. However, during the spinup adjustment, we see that initially improved high-resolution features partially reduce over time: the strength of the Atlantic overturning and the path of the North Atlantic Current are not maintained, and hence hydrographic biases known from low-resolution ocean models return in the high-resolution quasi-equilibrium state. We identify long baroclinic Rossby waves as a potential cause for the strong upper-ocean adjustment of the high-resolution model and conclude that a high horizontal resolution improves the state of the modeled ocean but the model integration length should be chosen carefully.


2017 ◽  
Vol 122 (4) ◽  
pp. 2686-2708 ◽  
Author(s):  
Tilia Breckenfelder ◽  
Monika Rhein ◽  
Achim Roessler ◽  
Claus W. Böning ◽  
Arne Biastoch ◽  
...  

2020 ◽  
Author(s):  
Martin Claus ◽  
Yuan Wang ◽  
Richard Greatbatch ◽  
Jinyu Sheng

<p>We present a method to decompose the time mean vertically averaged transport, as simulated by an high-resolution ocean model, into its four dominant components. These components are driven by the gradient of potential energy per unit area (PE), the divergence of the flux of time mean momentum (MMF) and eddy momentum (EMF), and the wind stress. Since the local vorticity budget and the bathymetry are noisy and dominated by small spatial scales, a barotropic shallow water model is used as a filter to diagnose the respective transports instead of integrating along lines of constant f/H.<br>Applying this method to the output of a high-resolution model of the North Atlantic we find that PE is the most important driver, including the northwest corner. MMF is an important driver of transport around the Labrador Sea continental slope and, together with the EMF, it drives significant transport along the path of the Gulf Stream and North Atlantic current. Additionally, the circulation patterns driven by the EMF compares well with an estimate based on a satellite product. Hence, the presented method provides insights into the relative importance of the different dynamical processes that may drive barotropic transport in an ocean model. But it may also be used to isolate potential issues if a model misrepresents the barotropic transport.</p>


2017 ◽  
Vol 44 (22) ◽  
pp. 11,537-11,546 ◽  
Author(s):  
Yuan Wang ◽  
Martin Claus ◽  
Richard J. Greatbatch ◽  
Jinyu Sheng

2010 ◽  
Vol 79 (1-2) ◽  
pp. 1-22 ◽  
Author(s):  
Yevgeny Aksenov ◽  
Sheldon Bacon ◽  
Andrew C. Coward ◽  
A.J. George Nurser

2015 ◽  
Vol 8 (7) ◽  
pp. 2187-2202 ◽  
Author(s):  
A. Samuelsen ◽  
C. Hansen ◽  
H. Wehde

Abstract. The HYCOM-NORWECOM (HYbrid Coordinate Ocean Model–NORWegian ECOlogical Model) modeling system is used both for basic research and as a part of the forecasting system for the Arctic Marine Forecasting Centre through the MyOcean project. Here we present a revised version of this model. The present model, as well as the sensitivity simulations leading up to this version, have been compared to a data set of in situ measurements of nutrient and chlorophyll from the Norwegian Sea and the Atlantic sector of the Arctic Ocean. The model revisions having the most impact included adding diatoms to the diet of microzooplankton, increasing microzooplankton grazing rate and decreasing the silicate-to-nitrate ratio in diatoms. Model runs are performed both with a coarse- (~ 50 km) and higher-resolution (~ 15 km) model configuration, both covering the North Atlantic and Arctic oceans. While the new model formulation improves the results in both the coarse- and high-resolution model, the nutrient bias is smaller in the high-resolution model, probably as a result of the better resolution of the main processes and improved circulation. The final revised version delivers satisfactory results for all three nutrients as well as improved results for chlorophyll in terms of the annual cycle amplitude. However, for chlorophyll the correlation with in situ data remains relatively low. Besides the large uncertainties associated with observational data this is possibly caused by the fact that constant C:N- and Chl:N ratios are implemented in the model.


Sign in / Sign up

Export Citation Format

Share Document