scholarly journals Earthquake Stress Drop in the Charlevoix Seismic Zone, Eastern Canada

2018 ◽  
Vol 45 (22) ◽  
pp. 12,226-12,235 ◽  
Author(s):  
John Onwuemeka ◽  
Yajing Liu ◽  
Rebecca M. Harrington
2017 ◽  
Author(s):  
Alba M. Rodriguez Padilla ◽  
◽  
John Onwuemeka ◽  
John Onwuemeka ◽  
Yajing Liu ◽  
...  

2013 ◽  
Vol 80 (3) ◽  
pp. 425-434 ◽  
Author(s):  
Gregory R. Brooks

A landslide debris field covering ~ 31 km2, the presence of large sediment blocks up to hundreds of meters long, and the exposure of deposits of a single landslide along the incised course of the Quyon River are evidence of a massive failure of sensitive Champlain Sea glaciomarine sediments along the lower Quyon Valley, southwestern Quebec, Canada. Seventeen radiocarbon ages indicate that the failure occurred between 980 and 1060 cal yr BP. Twenty-four additional radiocarbon ages reveal that nine landslides within a 65-km belt in the Quyon"Ottawa area also occurred at approximately this time. In combination, the contemporaneous occurrence of ten landslides between 980 and 1060 cal yr BP, the setting or morphology of five of the other failures, and the close proximity of two of the failures to the Quyon Valley landslide provide circumstantial evidence of a paleoearthquake-triggering mechanism. The paleoearthquake is estimated to be Mw ~ 6.1 or larger, with the epicenter within the West Quebec Seismic Zone. A common earthquake-triggering mechanism for the three largest landslides in eastern Canada suggests a close link between massive failures of sensitive glaciomarine sediments and the regional seismicity.


1991 ◽  
Vol 81 (2) ◽  
pp. 553-575 ◽  
Author(s):  
Michael Fehler ◽  
W. Scott Phillips

Abstract An inversion that fits spectra of earthquake waveforms and gives robust estimates of corner frequency and low-frequency spectral amplitude has been used to determine source parameters of 223 microearthquakes induced by hydraulic fracturing in granodiorite. Assuming a ω−2 source model, the inversion fits the P-wave spectra of microearthquake waveforms to determine individual values of corner frequency and low-frequency spectral amplitude for each event and one average frequency-independent Q for all source-receiver paths. We also implemented a constraint that stress drops of all microearthquakes be similar but not equal and found that this constraint did not significantly degrade the quality of the fits to the spectra. The waveforms analyzed were recorded by a borehole seismometer. The P-wave Q was found to be 1070. For Q values as low as 600 and as high as 3000, the misfit between model and spectra increased by less than 5 per cent and the average corner frequency changed by less than 15 per cent from those obtained with a Q of 1070. Average stress drop was 3.7 bars. Seismic moments obtained from spectra ranged from 1013 to 1018 dyne-cm. The low stress drops are interpreted to result from underestimation of the actual stress drops because of a nonuniform distribution of stress drop and slip along the fault planes. Spatially varying stress drops and slips result from the strong rock heterogeneity due to the injection of fluid into the rock. Stress drops were found to be larger near the edges of the seismic zone, in regions that had not been seismically active during previous injections. The seismic moments determined from spectra were used to obtain a coda length-to-moment relation. Then, moments were estimated for 1149 events from measurements of coda lengths from events whose moments could not be measured from spectra because of saturation or a low signal-to-noise ratio. The constant of proportionality between cumulative number of events and seismic moment is higher than that found for tectonic regions. The slope is so high that the seismic energy release is dominated by the large number of small events. In the absence of information about the number of events smaller than we studied, we cannot estimate the total seismic energy released by the hydraulic injection.


The seismic moment and source area of an earthquake can be determined by fitting theoretical displacement amplitude spectra to observed ones. From these basic parameters the dislocation at the source and the stress-drop can be estimated. This method was tested in the case of four earthquakes for which the source parameters were known from observed surface ruptures. The uncertainty in the moment and area determinations was found to be approximately a factor of 2; for the displacement and stress-drop it was approximately a factor of 3 and 5 respectively. The application of spectral analysis of body waves to earthquakes in the deep seismic zone of Tonga-Kermadec indicate that stress-drop as well as apparent stress increase with depth and decrease again at great depth. This observation is interpreted as reflecting increasing material strength in the deep seismic zone near 450 km, with a reduction of strength at still greater depths. It is proposed that the temperature distribution in the downgoing slab of lithosphere causes this pattern.


Author(s):  
Nicolas Pinet ◽  
Maurice Lamontagne ◽  
Mathieu J. Duchesne ◽  
Virginia I. Brake

Abstract This study documents two potential neotectonic features in the seismically active St. Lawrence estuary and western part of the Gulf of St. Lawrence of Quebec, Canada. Historically, the region is the locus of series of damaging earthquakes, including the 1663 M 7 earthquake, which suggests the occurrence of coseismic surface ruptures beneath the St. Lawrence River. In the western Gulf of St. Lawrence (Lower St. Lawrence seismic zone), a potential fault scarp identified on a vintage seismic profile has been investigated through high-resolution seismic and multibeam bathymetry data. On the seafloor, the scarp corresponds to an ∼1.8  m high (maximum) feature that is located above a buried escarpment of the Paleozoic bedrock. Holocene units are draping over the escarpment on one profile, but are possibly cut on two others. The scarp meets several of the criteria generally associated with neotectonic features. However, a close look at the data indicates that the staircase geometry of the top of the bedrock and its expression at the surface is linked, at least partially, with the presence of an erosion-resistant unit. This makes a neotectonic reactivation possible but not proven. In the Tadoussac area, ∼40  km north of the Charlevoix seismic zone, the offshore extension of the St. Laurent fault corresponds to an ∼110  m high bathymetric escarpment with well-preserved triangular facets. Such “fresh” morphology is unique in the St. Lawrence River Estuary and may attest to Quaternary displacements, yet other interpretations may also explain the unusual preservation of the escarpment. These two case studies illustrate the difficulty to unambiguously document Holocene fault scarps, even in the marine domain in which the sedimentary succession is generally continuous.


1988 ◽  
Vol 59 (4) ◽  
pp. 219-225 ◽  
Author(s):  
H. S. Hasegawa

Abstract The pattern of seismicity in eastern Canada depends on the presence of weak zones from previous major tectonic orogenies and how these weak zones are reactivated by local and regional stress fields and geophysical processes. Within the Canadian Shield, away from seismotectonic trends, there is a low level of seismicity and earthquakes tend to be small, less than M5. However, along seismically active trends, earthquakes as large as M7 have occurred. The seismotectonic features fall into four main categories: positive (uplift) continental basement linears; grabens formed by old plate separation; passive rifted margins offshore; and extinct spreading ridges. Two of the positive seismotectonic trends are the Boothia Uplift-Bell Arch that transects the northeastern part of the craton and northeastern Baffin Island, where the effects of postglacial rebound on the upper crustal stress field are the most pronounced. The St. Lawrence Valley (and interconnecting grabens) is a seismically active graben system that contains the most seismically active region (the Charlevoix zone) in eastern Canada. The extinct spreading ridge along the Labrador Sea and the Mesozoic rifted margin along Baffin Bay and Labrador Sea contain clusters of moderate seismicity. There are diffuse zones of moderate seismicity over some geological provinces (e.g. Central Metasedimentary Belt in western Quebec) apart from major tectonic features, a confined seismic zone (within an intrusion) in the Miramichi region and seismicity at the intersection of faults in northern Ontario. In the Nahanni region, which is situated near the boundary between the northeast Cordillera and the Interior Platform, the commencement of a noteworthy earthquake sequence with magnitude up to Ms 6.9 indicates considerable stress-strain build-up over a large area. There is an anticline in the epicentral area that is bounded by thrust faults and mountain ranges. In order to enhance our understanding of causative factors of current seismicity, it is necessary to determine in greater detail the tectonic forces and geophysical processes that are reactivating pre-weakened faults along the seismotectonic trends and over broad, diffuse seismogenic regions. Some of these factors are the rate of stress build-up, stress concentration at the intersection of faults and between mountain ranges, residual stress, the role of pore fluids, individual block movement, whether this movement is due to postglacial rebound or to other underlying viscoelastic phenomena and the rate of sediment deposition along the continental slope. Paleoseismicity is useful not only for the reconstruction of old large earthquakes but also for providing insight as to why surface fault offsets have not been observed in regions where large earthquakes (and associated high rate of microseisrnicity) have occurred within the past several hundred years.


Sign in / Sign up

Export Citation Format

Share Document