scholarly journals Arctic Sea Ice Melt Onset Timing From Passive Microwave-Based and Surface Air Temperature-Based Methods

2018 ◽  
Vol 123 (17) ◽  
pp. 9063-9080 ◽  
Author(s):  
Angela C. Bliss ◽  
Mark R. Anderson
2018 ◽  
Author(s):  
Abigail Ahlert ◽  
Alexandra Jahn

Abstract. Satellite observations show that the Arctic sea ice melt season is getting longer. This lengthening has important implications for the Arctic Ocean's radiation budget, marine ecology and accessibility. Here we assess how passive microwave satellite observations of the melt season can be used for climate model evaluation. By using the Community Earth System Model Large Ensemble (CESM LE), we evaluate the effect of multiple possible definitions of melt onset, freeze onset and melt season length on comparisons with passive microwave satellite data, while taking into account the impacts of internal variability. We find that within the CESM LE, melt onset shows a higher sensitivity to definition choices than freeze onset, while freeze onset is more greatly impacted by internal variability. The CESM LE accurately simulates that the trend in freeze onset largely drives the observed pan-Arctic trend in melt season length. Under RCP8.5 forcing, the CESM LE projects that freeze onset dates will continue to shift later, leading to a pan-Arctic average melt season length of 7–9 months by the end of the 21st century. However, none of the available model definitions produce trends in the pan-Arctic melt season length as large as seen in passive microwave observations. This suggests a model bias, which might be a factor in the generally underestimated response of sea ice loss to global warming in the CESM LE. Overall, our results show that the choice of model melt season definition is highly dependent on the question posed, and none of the definitions exactly matches the physics underlying the passive microwave observations.


2019 ◽  
Vol 13 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Abigail Smith ◽  
Alexandra Jahn

Abstract. Satellite observations show that the Arctic sea ice melt season is getting longer. This lengthening has important implications for the Arctic Ocean's radiation budget, marine ecology and accessibility. Here we assess how passive microwave satellite observations of the melt season can be used for climate model evaluation. By using the Community Earth System Model Large Ensemble (CESM LE), we evaluate the effect of multiple possible definitions of melt onset, freeze onset and melt season length on comparisons with passive microwave satellite data, while taking into account the impacts of internal variability. We find that within the CESM LE, melt onset shows a higher sensitivity to definition choices than freeze onset, while freeze onset is more greatly impacted by internal variability. The CESM LE accurately simulates that the trend in freeze onset largely drives the observed pan-Arctic trend in melt season length. Under RCP8.5 forcing, the CESM LE projects that freeze onset dates will continue to shift later, leading to a pan-Arctic average melt season length of 7–9 months by the end of the 21st century. However, none of the available model definitions produce trends in the pan-Arctic melt season length as large as seen in passive microwave observations. This suggests a model bias, which might be a factor in the generally underestimated response of sea ice loss to global warming in the CESM LE. Overall, our results show that the choice of model melt season definition is highly dependent on the question posed, and none of the definitions exactly match the physics underlying the passive microwave observations.


2021 ◽  
Author(s):  
Steve Delhaye ◽  
Thierry Fichefet ◽  
François Massonnet ◽  
David Docquier ◽  
Rym Msadek ◽  
...  

Abstract. The retreat of Arctic sea ice is frequently considered as a possible driver of changes in climate extremes in the Arctic and possibly down to mid-latitudes. However, it is unclear how the atmosphere will respond to a near-total retreat of summer Arctic sea ice, a reality that might occur in the foreseeable future. This study explores this question by conducting sensitivity experiments with two global coupled climate models run at two different horizontal resolutions to investigate the change in temperature and precipitation extremes during summer over peripheral Arctic regions following a sudden reduction in summer Arctic sea ice cover. An increase in frequency and persistence of maximum surface air temperature is found in all peripheral Arctic regions during the summer when sea ice loss occurs. For each million km2 of Arctic sea ice extent reduction, the absolute frequency of days exceeding the surface air temperature of the climatological 90th percentile increases by ~4 % over the Svalbard area, and the duration of warm spells increases by ~1 day per month over the same region. Furthermore, we find that the 10th percentile of surface daily air temperature increases more than the 90th percentile, leading to a weakened diurnal cycle of surface air temperature. Finally, an increase in extreme precipitation, which is less robust (statistically speaking) than the increase in extreme temperatures, is found in all regions in summer. These findings suggest that a sudden retreat of summer Arctic sea ice clearly impacts the extremes in maximum surface air temperature and precipitation over the peripheral Arctic regions with the largest influence over inhabited islands such as Svalbard or Northern Canada. Nonetheless, even with a large sea ice reduction in regions close to the North Pole, the local precipitation response is relatively small compared to internal climate variability.


2021 ◽  
Author(s):  
Vladimir Semenov ◽  
Tatiana Matveeva

<p>Global warming in the recent decades has been accompanied by a rapid recline of the Arctic sea ice area most pronounced in summer (10% per decade). To understand the relative contribution of external forcing and natural variability to the modern and future sea ice area changes, it is necessary to evaluate a range of long-term variations of the Arctic sea ice area in the period before a significant increase in anthropogenic emissions of greenhouse gases into the atmosphere. Available observational data on the spatiotemporal dynamics of Arctic sea ice until 1950s are characterized by significant gaps and uncertainties. In the recent years, there have appeared several reconstructions of the early 20<sup>th</sup> century Arctic sea ice area that filled the gaps by analogue methods or utilized combined empirical data and climate model’s output. All of them resulted in a stronger that earlier believed negative sea ice area anomaly in the 1940s concurrent with the early 20<sup>th</sup> century warming (ETCW) peak. In this study, we reconstruct the monthly average gridded sea ice concentration (SIC) in the first half of the 20th century using the relationship between the spatiotemporal features of SIC variability, surface air temperature over the Northern Hemisphere extratropical continents, sea surface temperature in the North Atlantic and North Pacific, and sea level pressure. In agreement with a few previous results, our reconstructed data also show a significant negative anomaly of the Arctic sea ice area in the middle of the 20th century, however with some 15% to 30% stronger amplitude, about 1.5 million km<sup>2</sup> in September and 0.7 million km<sup>2</sup> in March. The reconstruction demonstrates a good agreement with regional Arctic sea ice area data when available and suggests that ETWC in the Arctic has been accompanied by a concurrent sea ice area decline of a magnitude that have been exceeded only in the beginning of the 21<sup>st</sup> century.</p>


2018 ◽  
Vol 123 (10) ◽  
pp. 7120-7138 ◽  
Author(s):  
Philip Rostosky ◽  
Gunnar Spreen ◽  
Sinead L. Farrell ◽  
Torben Frost ◽  
Georg Heygster ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document